
 

 
ADDIS ABABA UNIVERSITY 
FACULTY OF INFORMATICS 

DEPARTMENT OF COMPUTER SCIENCE 
 
 
 
 

FAULT TOLERANCE MOBILE SOFTWARE 

AGENTS COMMUNICATION MECHANISM  

 
 

By 
ADDISALEM NEGASH 

 
 

A THESIS SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES 

OF 

ADDIS ABABA UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR THE DEGREE OF MASTERS OF SCIENCE IN COMPUTER SCIENCE 

 

JULY  2004 

 

 
 



 

Abstract 

Mobile software agent systems have becomes an important tool for developing distributed applications. 

The use of mobile software agents is recommended in environment where network connection is not 

reliable and where there is low bandwidth. This is because mobile agents can perform the work with 

limited communication with the system that has created them. One important feature of mobile 

software agents is their ability to communicate to each other.  Providing communication mechanism 

that guarantees delivery of message is that mobile software agent systems developer has to solve. A 

number of algorithms have been proposed to guarantee message delivery to highly mobile 

agents [13,8], but in our knowledge only one of them considers the existence of fault [8] and 

even that algorithm give responsibility transmitting message to a mailbox. In this thesis we 

have developed an algorithm that provides guaranteed delivery of message in the existence of 

fault particularly without assuming the location of mobile agent and without inhibiting 

movement of mobile software agent.  



 

Acknowledgment 

This thesis could not be completed without the help of many people. First and foremost, I 

would like to thank my advisor, Dr. Dawit Bekele, for his guidance and help. His support, his 

gentle way of teaching, his generosity and kindness, and his high standards of integrity have 

been inspirational to me and crucial to the completion of this thesis. 

I would like to thank Dr. Yirsaw Ayalew, Dr. Solomon Atnafu, Mr. Jacob Eliosoff, Ato Girma 

Berhe and Ato Dereje Getaneh for their help.  

All friends, colleagues and my families also play an important role in the accomplishment of 

the study and I thank them for their suggestions and advice. Most of all I have to thank my 

friends Ato Berhanu Tekle, W/t Helen Ayele, W/t Rahel Kifle and Ato Taddesse Tareke for 

their constant help. I would like to express my special thanks to my family. It is their love, 

understanding, and support that enabled me to accomplish this thesis. 

I think that no list of acknowledgments can ever be complete, and this will not be an 

exception. So if you feel that I should have acknowledged you as well as the others, please 

feel acknowledged. I simply forgot to mention you.  



 

Table of content 

1. Introduction.....................................................................................................................1 

2. Problem Statement and Methodology.............................................................................6 

2.1. Problem Statement ..................................................................................................6 

2.2. Assumptions............................................................................................................7 

2.3. Delimitations and limitation ...................................................................................7 

2.4. OBJECTIVES.........................................................................................................8 

2.5. Methodology Used..................................................................................................9 

3. Background...................................................................................................................10 

3.1. Overview Of Mobile Software Agent...................................................................10 

3.2. Mobile Agent Architecture ...................................................................................11 

3.3. Communication Model of Mobile Software Agent ..............................................13 

4. Related work .................................................................................................................17 

4.1. Approach used to deliver messages to mobile agents\devices .............................17 

4.2. Guaranteed message delivery ...............................................................................21 

4.2.1. Murphy’s algorithm’s ...................................................................................21 

4.2.1.1. Using Distributed Snapshot for Physical mobility ...............................22 

4.2.1.2. Using Distributed Snapshot Logical Mobility ......................................23 

4.2.1.3. Based on diffusing Computation ..........................................................24 

4.2.2. Mailbox based message delivery ..................................................................25 

5. Message Delivery To Highly Mobile Software Agent .................................................27 

5.1. Introduction...........................................................................................................27 



 

5.2. Overview of Murphy’s algorithm.........................................................................28 

5.2.1. Basic Murphy’s algorithm ............................................................................29 

5.2.2. The Enhanced Algorithm for Multiple message delivery.............................32 

5.2.3. The Enhanced Algorithm for Dynamic Network .........................................34 

5.3. Fault tolerant communication algorithm...............................................................36 

5.3.1. Model ............................................................................................................36 

5.3.2. Delivery of Message with Static Network Graph.........................................38 

5.3.3. Multiple Message Delivery...........................................................................40 

5.3.4. Dynamic Graph.............................................................................................41 

5.5. Summary...........................................................................................................47 

6. Implementation .............................................................................................................48 

6.1 Communication System....................................................................................48 

6.2 Mobile Agent System Simulator.......................................................................52 

6.3 The prototype....................................................................................................56 

6.4 Languages, Tools and Experimental settings ...................................................59 

6.5 Analysis of the Result .......................................................................................59 

6.6 Discussion.........................................................................................................60 

7. Conclusions...................................................................................................................62 

7.1 Conclusions...........................................................................................................62 

7.2 Contribution of the study ......................................................................................63 

7.3 Future Work..........................................................................................................63 

References.............................................................................................................................64 

 



 

List Of Figures 

 

Figure 5-1 Forwarding pointer scheme ..........................................................................29 

Figure 5-2  Broadcasting scheme ....................................................................................29 

Figure 5-3 Broadcasting and coping messages in each node .........................................30 

Figure 5-4  The effect of FLUSHED incoming channels................................................31 

Figure 5-5 Multiple message delivery ............................................................................33 

Figure 5-6 Destination ahead of source..........................................................................35 

Figure 5-7 Source ahead of destination. .........................................................................36 

Figure 5-8 Logical model for the network graph ...........................................................37 

Figure 5-9  The effect of disconnection...........................................................................39 

Figure 5-10 The effect of constructing the network graph dynamically ..........................44 

Figure 5-11 Message content at different node is different..............................................45 

Figure 6-1 User interface used to create and send message ...........................................57 

Figure 6-2 Communication interface..............................................................................58 

Figure 6-3 Interface used to post message send to an agent...........................................58 



 1

1. Introduction 

The emergence of computers significantly extends human being’s computing ability, and 

the enhancement of communication technology extends computer’s computing ability. 

The combination of computer and communication generates a whole range of computer 

network technologies, which change the traditional standalone computation on individual 

computer into distributed computation on connected cooperative computers.  

A distributed system is attractive for creating cooperation between workers of an 

organization. Since organizations are after distributed to different locations, the 

employees need to share data. In addition, they also need to share resources. For sharing 

resources distributed system is the best solution. 

Distributed systems are interesting for providing much higher processing power than a 

single computer can provide. For instance, calculating some astrophysics problem may 

need several of Pico Hz of processing power that even the most powerful computer 

cannot provide. Distributed systems organized as a grid of computer can easily provide 

this power.  

In the traditional world of distributed systems, client/server model using remote 

procedure calls has been accepted as the best model to cope up with distributed. In 

addition, large applications have built using this technology. The conventional client 

server model has been adapted to object-oriented technology, giving rise to systems such 

as CORBA where objects are used as both client and server, and where RPC’s are 

replaced by object invocations. Although both the traditional client/server model and the 



 2

distributed object-oriented model perform well in a controlled, high-bandwidth office 

environment, they are not adapted to face challenges of slow and unreliable networks like 

Internet and Mobile environment. 

The other technique used in distributed system to access recourses of other computers, is 

by using mobile code. In its simplest form, the concept of mobile code involves 

dynamically installing code on a remote host. In Web applications, applets and servlets 

are a common form of mobile code. The mobile code concept also appears in systems 

that extend the notion of remote procedure calls to transport the procedure to the server 

along with the call. 

Many researchers extend the mobile code concept to remote evaluation, in which an 

object (code and data) moves from one host to another. The mobile agent abstraction 

extends this notion further by moving code, data, and state from one host to another. A 

mobile agent runs in one location, moves to another host, and continues at that host.  

A mobile software agent usually differs from other forms of mobile code in that mobile 

agents have migration autonomy. By autonomy we mean that the agent can decide when 

and where to go. 

Mobile agents offer many potential advantages over traditional approaches[19]. By 

moving the computation to host, which holds the data, it results to high throughput and 

low latency access to that data. Compared to more traditional client server approaches, 

mobile agents can avoid transmitting a large amount of data across the network, which is 

of particular value when the network is slow or unreliable. In addition to speed and 

reliability improvements, mobile agents can also help structure distributed applications. A 



 3

service designed to relocate itself in the network to accommodate changing network 

conditions or the changing location of its clients can easily be written as a mobile agent.  

Mobile software agents are suitable to develop distributed Internet application [19,31,32]. 

Since a mobile software agent is autonomous, it can tolerate the unreliable condition that 

may exist in the Internet. Distributed Internet applications are particularly important for 

developing countries like Ethiopia where it is too expensive By using application that use 

mobile software agents, it is possible to limit the effect of the unreliable Internet 

connection. Therefore developing countries like Ethiopia can benefit from Mobile 

software agent technology. 

In last few years, several systems and programming environments have appeared to 

support the development of distributed applications based on mobile agents. Nevertheless 

there are still several open research issues to make the mobile agent technology widely 

appropriate. Among several technical problems that remain open, one is related to 

handling the agents’ communication.   

One of the basic properties of an agent is, its ability to communicate with other agents. At 

first glance, remote communication seems a contradiction with the goal of code mobility, 

i.e. to minimize communication over network. However, remote communication is 

helpful with conjunction with mobile software agent for monitoring mobile software 

agent’s activity.   

Many Mobile Software Agent systems seem to give a great emphasis on local 

communication, either using some sort of meeting abstraction, events for group 

communication or tuple space [13]. On the other hand remote communication is handled 



 4

by conventional mechanisms like RPC, Java RMI and message passing, that either do not 

give guarantee for the delivery of messages, or enforce continuous connectivity with the 

message source, which in many cases defeats the very purpose of using mobile agents 

[13]. The attachment of message and message source becomes more problematic in the 

context of unstable network connection [13]. 

This study deals with communication mechanism of mobile software agent, which 

provides guaranteed message delivery in the existence of fault. In this study, only 

disconnection is considered as fault. However we believe that it can be easily generalized 

to consider other types of faults. 

This thesis is organized as follows: 

− Chapter 2, PROBLEM STATEMENT AND METHODOLOGY, presents the 

problem to be solved and the methods that are employed for the research.  

− Chapter 3, BACKGROUND, gives background information regarding mobile 

software agents and the communication used by current mobile software agent 

system. 

− Chapter 4, RELATED WORK, reviews some of the related works done in the 

area of message delivery to mobile software agent: - these include Murphy’s 

Algorithm, Mailbox based message delivery, and so on.   

− Chapter 5, MESSAGE DELIVERY TO HIGHLY MOBILE SOFTWARE 

AGENT, presents an algorithm that provides a guaranteed message delivery to a 

highly mobile software agent by analyzing and extending Murphy’s Algorithm. 



 5

− Chapter 6, IMPLEMENTATION, presents a prototype developed in order to 

demonstrate the communication algorithm presented in chapter 5 of this thesis. 

− Chapter 7, CONCLUSIONS, highlights some concluding remarks and outcomes 

from the research. 



 6

2.  Problem Statement and Methodology 

2.1. Problem Statement  

The problem we are interested in is the delivery of messages between two mobile 

software agents in the existence of fault. Amy L. Murphy has studied the problem of 

communication between mobile software agents and develops an algorithm to provide 

guaranteed delivery of message [13]. Murphy’s algorithm considers that the 

communication medium is reliable. However mobile software agent is recommended in 

the network where network connection is not reliable. We will try to address this problem 

in the existence of fault by focusing on disconnection. 

In various situations, mobile agents need to communicate with each other but the free 

movement of mobile agents makes determining the location of mobile software agent a 

difficult task and makes in delivering of messages to mobile agent a difficult problem 

[8,12,13,14,15,16,32]. 

Many Mobile Software Agent systems seem to give a great emphasis on local 

communication, either using some sort of meeting abstraction, events for group 

communication or tuple space [13,18,22]. Remote communications is handled by 

conventional mechanisms like RPC, Java RMI and message passing, that either do not 

give guarantee to the delivery of messages, or enforce continuous connectivity with the 

message source, which in many cases defeats the very purpose of using mobile agents 

[13]. The attachment of message and message source becomes more problematic in the 



 7

context of unstable network connection [11].  Since in such kind of network it is possible 

that the connection between the node containing the message and message source fail, 

either the application fails because of this or it should be slowed down by waiting until 

the two nodes are reconnected. 

To utilize the potentials of mobile software agents, it is important to design a 

communication infrastructure that guarantees the delivery of messages without modifying 

the nature of Mobile Software Agent. That is communication mechanize that doesn’t 

assume mobile software agent location and inhibit mobile software agent’s movement is 

needed. Therefore, this thesis deals on finding communication mechanism which provide 

guaranteed message delivery in the presence of fault with out inhibiting mobile agent 

movement and without assuming the location of mobile software agent. 

2.2. Assumptions 

In this study the following assumption is made: 

• A network that may have temporary failure 

• The network will not crash while agent is moving 

2.3. Delimitations and limitation 

This study is delimited to investigate communication mechanisms for Mobile Software 

Agents that insure delivery of message in existence of unreliable network connection. 

Time and cost constraints have limited this study to the indicated issue. 



 8

2.4. OBJECTIVES 

General objectives 

The objective of the study is to investigate the mobile software agent communication 

mechanism that insures delivery of messages without changing the nature of Mobile 

Software Agent in the presence of fault. 

Specific objectives 

The specific objectives of this study are to investigate mobile software agents 

communication mechanisms that 

• can tolerate disconnections.   

• allow asynchronous message communication. 

• guarantee reliable delivery of messages 

• Don’t assume the location of the gent 

• Don’t inhibit agents movement  



 9

2.5. Methodology Used 

The methodology used in the study is the following: 

• Different related researches and background theory have been revised through 

literature review.  

• An algorithm that can be adapted to provide the desired communication 

mechanism has been selected and it has been adapted to work in the existence 

of disconnection. 

• The prototype that is used to demonstrate communication mechanism 

implemented by the algorithm, has been developed and tested. 

 



 10

3. Background 

3.1. Overview Of Mobile Software Agent 

A mobile agent is a program, which represents a user in a network and is capable of 

migrating autonomously from one node to another node, performing computations on 

behalf of the user [7]. In order to support the agent mobility, the infrastructure should 

provide a language-level primitive that an agent can call to move itself to another node. 

An agent is able to cooperate with other agents in order to perform complex and dynamic 

tasks. It is also capable of identifying and using resources specific to any node on which 

it finds itself. 

The mobile agent paradigm differs from the traditional client/server approach in the 

following ways [31,32]. In the client-server paradigm, resource owners (servers) are 

physically distant from their clients (users). The communication among these parts (client 

and server) occurs through a network of computers, being mediated by mechanisms such 

as remote procedure calls, message exchange, sockets and so on. In client-server 

paradigm, the reliability of the communication links and the synchronicity of the remote 

procedure calls are important requirements of the majority of such applications. In 

contrast, in the mobile agent paradigm, the agents migrate to interact locally, at the same 

host as the resources. By moving from one location to another, agents can dynamically 

change the interaction quality, reducing the communication cost and the overhead added 

to maintain the reliability of communication [5]. In short, the mobile agent paradigm 



 11

differs from client-server paradigm since in mobile software paradigm; code is moved to 

where data is stored rather than moving data is moved where the code is stored. Moving 

code to data is more reliable than moving data to code in low bandwidth and unreliable 

network like Internet. This is because the following facts. 

• The intermediate data shouldn’t be moved; as a result it saves bandwidth 

• The applications are only vulnerable to network disconnection during the 

agent transfer, not during the interaction with the resource. 

Mobile agents differ from other mobile code or program in that they provide autonomy, 

that is, they themselves can decide dynamically where and when to travel to a particular 

destination [9]. 

3.2. Mobile Agent Architecture 

A mobile agent is composed of three parts: 

• The agent code part which corresponds to a certain algorithm, 

• The agent execution thread (with an execution stack) and 

• The agent data part that is corresponds to the value of the agent’s global 

variable. 

Each agent runs independently of each others, is self-contained from a programmatic 

perspective, and preserves all of its state when it moves from one network node to 

another. 



 12

The mobile software agent travels between execution environments called places. A place 

is a control within an agent system that provides a uniform environment in which an 

agent can execute [2]. It provides an infrastructure for managing mobile agents, enforcing 

security policies and accessing local resources.  

Places have the following actions  

• Facilitate agent execution, 

• Support agent communication with other agent and with the server and 

• Protect themselves and agents from attack 

Mobile software agent system usually provide one or more of the following services: 

• Code Transfer: Typically, the code to be executed by an agent is not available 

on all of the agent’s destination hosts. Thus, most agent systems provide a 

means for transferring the code of the agent either by transferring it from a 

centralized location (code base) or from the host, where the agent was 

previously executed. 

• Agent Identifier: Many agent systems assign a unique identifier to agents so 

that they can address each other and to register themselves at a naming server 

if necessary. 



 13

3.3. Communication Model of Mobile Software Agent 

One of the basic abilities of an agent is its ability to communicate with other agents[12]. 

During its nomadic life, an agent needs to communicate with other entities. For example, 

communication is needed to control the child agent, to coordinate agents’ activities with 

each other or to access the resources of the network. 

Communication mechanisms of mobile software agent can be seen along with two 

orthogonal dimensions: the number of mobile software agents involved in 

communication and their respective location [34]. Hence, the first dimension partitions 

the space of mechanism into point-to-point and multi-point mechanisms while the second 

distinguished among local and remote communication.  

Point-to-point mechanisms enable communication between two mobile agents. The more 

primitive mechanism is message passing, although no existing mobile software agents 

actually use it for communication between agents moving arbitrarily. Usually, some form 

of remote procedure call (RPC) is provided instead. This may involve invocation of bare 

procedure or method invocation on remote object.  

Multi-point mechanisms enable communication between three or more mobile software 

agents at a time. Shared memory is by far the mechanism most frequently used to achieve 

multi-point communication. Most of the existing mobile agent uses this method for local 

communication, although it could be extended for remote communication [18].  

Communication mechanisms of mobile agent can also be divided into two groups [34]: 

direct communication, where the communicating peers explicitly identify themselves; 



 14

and anonymous communication, where the sender does not know the identity of the 

recipients. Direct communication can involve either only two peers or a sender and a set 

of receivers (multicast). Forms of anonymous communication being supported are events, 

spaces and tuple spaces.  

In direct coordination models, agents start a communication by explicitly naming the 

partners involved. In the case of inter-agent coordination, two agents must agree on a 

communication protocol, typically peer-to-peer. Access to local resources generally uses 

client-server coordination, since a hosting environment usually provides local servers for 

its resource management. 

Most Java-based agent systems—like Sumatra, Aglet and Odyssey-adopt the client-server 

style typical of object systems, and can also exploit low-level message passing via 

TCP/IP [7,33,34]. Agent Tcl [18] provides direct communication between two agents, 

based on message passing, and also provides asynchronous communication modes. Thus, 

they still rely on direct communications based on remote procedure calls for their 

services. Although middleware systems can facilitate the use of independently developed 

components, using them to enable direct mobile-agent coordination will cause latency 

and reliability problems [12]. 

In meeting oriented communication model, an agent can interact with no need of explicit 

naming of the involved partner [12,34]. Agents join either explicitly or implicitly known 

meeting points; afterward, they can communicate and synchronize with the other agents 

that participate in such meetings. Ever-open meetings abstract the role of servers in an 

execution environment; application agents can open further meeting points as needed. To 



 15

avoid the problems related to non-local communication, such as unpredictable delay and 

unreliability, meetings often take place in a given execution environment, which allows 

only local agents to participate. 

The Ara mobile-agent system implements a typical example of meeting-oriented 

communication model [34]. The concept of event-based communication and 

synchronization, defined by the Object Management Group and implemented in the Mole 

mobile-agent system offers a sophisticated form of meeting-oriented communication[36]. 

Specific synchronization objects, which agents must share the reference to, assume the 

role of meetings. Accessing one of these synchronization objects allows agents to 

implicitly join the meeting.  

Meeting-oriented communication models partially solve the problem of exactly 

identifying the partners involved, although they cannot achieve the anonymity of full 

spatial uncoupling: Agents must share at least the common knowledge of the meeting 

names. The major drawbacks of the models derive from there enforcing synchronization 

among interacting agents[12,34]. Since the schedule and the position of agents cannot be 

predicted in many applications, the models run a high risk of missing interactions. 

Furthermore, if the meetings are not locally constrained, they must be implemented by 

message passing, thus inheriting the efficiency and reliability problems of direct 

coordination models. 

In blackbox-based model, agents interact via shared data spaces [12,34]. The data are 

used as common repositories to store and retrieve messages. In this sense, interactions are 

fully temporally uncoupled, but, because agents must agree on a common message 



 16

identifier to communicate and exchange data via a blackboard, they remain spatially 

coupled. To overcome scalability problems, a local blackboard can be associated with 

each hosting environment. 

Several systems propose and implement blackboard- based communication models for 

mobile-agent applications [34]. In Ambit, a formal model for mobile computations, 

agents can attach messages to a blackboard on a given site; another agent can retrieve and 

read these messages when arriving at the same site.  

Linda-like coordination model [35], uses local tuple spaces as message containers similar 

to blackboards. In addition, a tuple space bases its access on associative mechanisms. The 

system organizes information in tuples and retrieves it using associative pattern matching. 

This approach enforces full uncoupling, requiring neither temporal nor spatial agreement.  



 17

4. Related work 

In this chapter we will discussed algorithms developed to deliver messages for mobile 

agents. Since the characteristics of mobile software agents are similar to mobile devices, 

in this chapter, those works done related to delivery of messages to mobile devices will 

be included as well.  

Basically, the complexity of message delivery problem in Mobile Software Agent System 

or in mobile computing environment in general is caused by the migration of the actors 

(the agent or the mobile unit) [8]. Various approaches like central server, forwarding 

pointer, broadcasting, hierarchical location directory have been proposed to overcome the 

message loss caused by migration of recipients.  

4.1. Approach used to deliver messages to mobile 

agents\devices 

Central server 

There are three types of central servers called central forwarding server, central query 

server and home server. Central forwarding server and central query server hold the 

current address of all agents in the network. However home server only holds the current 

address of some agents, usually the agents created on that server. 

In central forwarding server approach, before an agent migrates, it should inform the 

server about its migration and when the agent arrives, it should tell the server that it has 



 18

finished its migration. If agent wants to send message to another agent, it sends the 

message to central server and the central server forward the message to the agent to 

which the message is sent.  

Central query server approach is similar to the central forwarding approach. However, in 

central query server; the server will give an address of the agent (to which the message 

will be send to) to the agent which wants to send a message, instead of forwarding the 

message.  

Home server approach works in the same way as central Forwarding approach except that 

few of agents’ address are stored. Meaning every agent has a home server and agent’s 

name contains its home address. Whenever an agent moves at some node in the network, 

the agent registers its current address in its home server. When an agent wants to 

communicate with another agent, it sends a message to the home server of the agent to 

which the message is sent. Upon accepting a request, the home server forwards the 

message to that agent to which the message is sent. 

Central server approach will be a bottleneck for mobile environment particularly for 

highly mobile once. This is because informing central server will be an overhead and also 

disconnection of these servers will disturb the agent’s performance.   

Forwarding Pointer  

In the forwarding of pointer scheme, before an agent migrates, it leaves a pointer which 

points to the target host in its current location. When a message is sent to an obsolete 

address of the recipient, the message is routed along the forwarding pointer. 



 19

The disadvantages of using forwarding pointers are: 

• If one host in the sequence crashes, it is difficult to locate the agent 

• The link way becomes too long, which results in loss of performance. 

• If the recipient migrates frequently, the message may keep chasing the 

recipient and cannot be received until the death of the recipient. 

Broadcasting 

A simple broadcast scheme assumes a spanning tree of nodes through which a message 

sent by any node. This node then broadcast the message to it neighbors, which broadcast 

the message to their neighbors, and so on until the leaf nodes are reached. This, however, 

doesn’t guarantee delivery of message. This is because an agent traveling in the reverse 

direction with respect to the propagation of the message may not be able to get the 

message. If the agent is being transferred at same instance the message is propagating in 

the other direction, the agent and the message will cross in the channel and message 

delivery will never occur. 

There are other types of broadcast approach called query broadcast and notification 

broadcast. In query broadcast, when an agent wants to send a message to another agent, 

the host sends a query asking an address of that agent to all nodes. When the host gets the 

address, the message will be send by using that address. In notification broadcast, 

whenever an agent reached at a site, it will broadcast its current address to all nodes of 

the network. In this approach all nodes will have a guess address of all agent and use that 

address to send message to an agent. When a node receives a message to an agent which 



 20

is not in the node, it keeps the message until the new location of the agent is broadcasted 

and then the host forwards the message to that location. 

The cost of communication of query broadcast seems better than the other broadcasting 

approach for large messages. However, this is not appropriate for highly mobile agents 

since their address will be changed frequently. For the same reason, notification approach 

is not appropriate for highly mobile agent.  

The simple broadcast schemes have less reliance on the agent home for, agent tracking or 

message forwarding, thus it can used to deliver messages for highly mobile agents. It can 

be implemented in local Internet domain or local Ethernet. However, message in transit 

make the broadcasting approach to not provide guaranteed delivery of message.  

Hierarchical Schemes 

In the hierarchical schemes, a tree like hierarch of servers forms a location directory 

(similar to DNS). Each server in the directory maintains a current guess about the site of 

some agents. Site belong to regions, each region corresponds to a sub-tree in the directory 

(in the extreme cases the sub-tree is simply a leaf-server for the smallest region, or the 

whole tree for the entire network). Each region corresponds to a sub-tree in the directory. 

For each agent there is a unique path of forwarding pointers that starts from the root and ends 

at the leaf that knows the actual address of the agent. Messages to agents are forwarded along 

this path. 

The hierarchical scheme scales better than forwarding pointers and central servers. It 

supports locality of mobile object migration and communication. However, the hierarchy 



 21

is not always easy to construct, especially in the Internet environment. The hierarchical 

scheme itself cannot guarantee message delivery since messages might also chase their 

recipients under this scheme. 

4.2. Guaranteed message delivery 

In the previous section, we discussed about various approaches for delivering messages 

for mobile agents. None of them provide guaranteed delivery of message by themselves 

to highly mobile software agents.  

In our knowledge, there are only few algorithm designed to guarantee delivery of 

message to mobile software agents. One of the algorithms is designed by Murphy [13], 

which uses ideas of distributed snapshot and diffusion computation to guarantee delivery 

of message for highly mobile agent in the absence of fault. There is also another 

algorithm designed by Cao, Feng, Lu, and Das [8], which tries to attach mobile agents to 

mailbox and achieve delivery of message by using the mailbox.  

4.2.1. Murphy’s algorithm’s 

Amy L. Murphy proposed algorithms which uses technique similar to distributed 

snapshot to guarantee the delivery of message in physical as well as logical mobile 

environment in the absence of fault. Physical mobility deals with the mobility of physical 

components and logical mobility deals with mobility of mobile software. One of the 

algorithms is based on the concept of diffusion computation proposed by Scholten and 

Dijkstra[27] and the others are based on Distributed snapshot. 



 22

4.2.1.1. Using Distributed Snapshot for Physical mobility  

Murphy adapts the snapshot algorithm to message delivery. In order to avoid confusion in 

terminology between the control traffic generated by the snapshot algorithms and the data 

traffic containing the information being communicated to the mobile unit, they use the 

term announcement to refer specifically to the data message being delivered while a 

message can be either data or control (including mobile unit) 

The snapshot algorithms were developed to detect stable properties such as termination or 

deadlock by creating and analyzing a consistent view of the distributed state. The 

snapshot algorithm is used to record the state of the message in the network graph having 

FIFO channels.  

The snapshot algorithm consists of two main localized actions to collect the local 

snapshot: the processing of the control messages (markers) and the arrival of the 

messages to be recorded. The marker arrival rule states that when a marker arrives at a 

node not involved in a snapshot, the node begins its local snapshot by recording the 

processor state, and then sends the marker on all outgoing channels.  

The message arrival rule of the snapshot states that if the message arrives at a node from 

channel C before the marker arrives on channel C, and the node is in the middle of the 

local snapshot, the message is to be recorded as on the channel during the snapshot The 

local snapshot is complete when the marker has arrived from all incoming channels 

Murphy adapts the snapshot algorithm to perform message delivery in the dynamic, 

mobile environment. In the algorithm mobile unit is considered as persistent messages 



 23

(the mobile unit is assumed to be somewhere in the network) and the message to be 

delivered are considered as marker.  

Since the mobile unit is considered as a message, and the snapshot records the location of 

messages; the global snapshot of the mobile system will show the location of the mobile 

unit. Therefore, one option is to simply deliver the announcement directly to this location; 

however, it is possible (and likely in systems with rapidly moving mobile units) that the 

mobile unit will move between the time its position is recorded and when the 

announcement arrives at the recorded position. Therefore, they alter the snapshot 

recording to delivery of the message by augmenting the control messages with the 

announcement and changing the recording of messages into the delivering of 

announcements.  

4.2.1.2. Using Distributed Snapshot Logical Mobility  

As the one done for physical mobility, this algorithm is also based on distributed snapshot 

algorithm (The Chandy-Lamport algorithm). Here also mobile unit are considered as 

messages and the actual message assumed as markers.  

This algorithm differs from the one for physical mobility in that here, the algorithm 

allowed for concurrent delivery of message. Concurrent message delivery is done in the 

way that message delivered before the end of the delivery of another message will be 

stored in the buffer of the node and when the snapshot of the previous message at the 

node is cleared, the message stored in the buffer is assumed as newly arrived one. 



 24

This algorithm has also version, which allow the graph to grow as the mobile agent 

moves. This version has also another responsibility of constructing the graph while the 

agent moves.  

4.2.1.3. Based on diffusing Computation 

Diffusion computation has been used by Amy L. Murphy to develop a guaranteed 

message delivery [13]. By equating the root node of the computation to the concept of a 

home agent from Mobil IP and by replacing the messages of the computation with mobile 

units, the result is an algorithm which instead of tracking a computation as messages are 

passed through a system of processing nodes, tracks a movement of mobile unit as it visit 

various base stations in the system. Essentially, the graph of the Dijkstra-Scholten 

algorithm defines a region within which the mobile unit is always located. Although this 

is not directly a message delivery algorithm, by propagating the data message to be 

delivered throughout this region, message delivery can be achieved.  

Diffusing computations have the property that the computation initiates at a single root 

node, while all other nodes are idle. The computation spreads as messages are sent from 

active nodes. The basic idea of the algorithm is maintaining a spanning tree that includes 

all active nodes.  

This diffusion computation helps to track the mobile unit. Here they consider the mobile 

unit in place of message. When a mobile unit is sent from an active node to an idle node, 

the idle node will added as a child of the former in the tree. Mobile unit migrates among 

tree nodes have no effect on the structure but may activate idle nodes still in the tree. An 



 25

idle leaf node can leave the tree at any time by notifying its parent. Termination is 

detected when an idle root that remains in the tree. 

Since the sender of the message cannot know whether or not the destination node already 

in the tree, maintaining the tree from parent to child is difficult. As the result, the tree for 

message delivery is maintained from child to parent. 

For message delivery is assume that the message (the data message to be delivered) 

originates at the root and it is relied on the property that there is always a path from the 

root to the mobile unit along edges in the tree. It is only necessary to send the message 

along edges in the spanning tree. But, because this tree is maintained with pointers from 

child to parent, the message must be propagated along the successor edges, from parent to 

child. When a message arrives from a source other than the parent, the message is 

rejected. In this manner, the message is only processed along the tree paths 

To cope up with the migration of mobile unit, each node stores a copy of the message 

until delivery is complete or the node is removed from the tree. Storing the message in 

this manner ensures that the mobile unit cannot leave a region without receiving a copy of 

the message.  

4.2.2. Mailbox based message delivery 

In this approach, each mobile agent has mailbox. When an agent wants to communicate 

with another agent, it sends message to that agent’s mailbox.  An agent can get a message 

from the mailbox by using push and pull technique. In the push technique the mailbox 

sends the message to mobile agent.  Here the mobile agent must send its address to its 



 26

mailbox and the mailbox will forward any message send to the agent. In pull technique, 

the mobile agent keeps the mailbox address and retrieves messages from it. 

In the mailbox-based scheme, the mailbox is detached from its owner agent. Before 

migration the agent can decide to take its mailbox with it. It is possible to make mailbox 

stationary, to migrate with owner agent or to follow the owner agent with some distance. 

To deliver message to mailbox, home-server based, forwarding pointer or distributed 

registration protocol can be used. In home-server protocol, the mailbox is stationary in 

the home server of the owner agent and message is sent to that server. In the forwarding 

pointer protocol, before a mailbox migrates, it leaves a pointer which points to the target 

host, in its current location. When a message is sent to an obsolete address of the 

mailbox, the message is routed along the forwarding pointer. In distributed registration 

based protocol, before the mailbox migrates, it deregisters itself from all hosts visited by 

it and wait an acknowledgment from them. After arriving to the new host, it register the 

new address to all hosted previously visited by it. 

Guaranteed delivery of message can be provided by the protocol used to track mobile 

agent and mailbox. Distributed protocol can be used to guarantee delivery of message to 

the mailbox. Synchronous message communication between the mailbox and owner agent 

can guarantee delivery of message from mailbox to agent. 

Mailbox based message delivery can guarantee message delivery but will be bottleneck 

for highly mobile agent since an agent should synchronize with mailbox. Since mobile 

agent system should manage both the mailbox and the mobile agent, the implementation 

this system is also complicated. 



 27

5. Message Delivery To Highly Mobile 

Software Agent  

5.1. Introduction 

The objective of this chapter is to present an algorithm that provides guaranteed message 

delivery to a highly mobile agent in the existence of fault. We only consider 

disconnection as a fault; however we believe that the algorithm can be easily modified to 

tolerate other kinds of faults. 

The algorithm adapts the Algorithm developed by A. Murphy [13], which provides 

guaranteed delivery in the absence of fault. Our algorithm modifies the Murphy’s 

algorithm to work in the existence of disconnection. 

Our algorithm provides guaranteed delivery of message in static and dynamic network 

graphs. In the case of static network graph, it is assumed that the graph is pre-established 

before the algorithm runs and the algorithm doesn’t worry about the construction of the 

network graph. In the case of dynamic network graph, the graph should be constructed 

dynamically and the algorithm has additional responsibility of constructing the network 

graph dynamically while the agent moves. 

In section (5.2) we will discuss Murphy’s algorithm on which our algorithm is based on, 

and in sections (5.3) and (5.4), we will discuss the algorithm that we designed in the 



 28

study. In the last section, we will summarize the chapter and will discuss how the 

algorithm can be modified to work in the existence of faults other than disconnection. 

5.2. Overview of Murphy’s algorithm 

In this section we will discuss an algorithm, which is developed by Amy L. Murphy [13], 

which provides guaranteed message delivery in the absence of fault to a highly mobile 

software agents. Murphy’s basic algorithm deals with a single message delivery in a 

static (predefined) network and its subsequent enhancements that allow multiple 

messages delivery and construction of the network graph dynamically while the agent 

moves. 

The logical model used in Murphy’s algorithm is a typical network graph of nodes and 

channels, where the nodes represent the server willing to host the agents, and the 

channels represent links between nodes that can be used for transporting messages as well 

as agents. These channels are directional and FIFO. 

The main objective of the algorithm is to guaranty the delivery of message to highly 

mobile agents. Simple broadcasting or forwarding schemes, recommended by some 

authors may create situations where the message never reaches the agent. This happens 

when the broadcasted messages and the agent travels in reverse direction in the case of 

broadcast scheme (figure 5.2), and when the agent moves as fast as the message in the 

case of forwarding scheme (figure 5.1). 



 29

 

 

 

 

 

Figure 5-1 Forwarding pointer scheme 

 

 

 

 

 

Figure 5-2  Broadcasting scheme 

5.2.1. Basic Murphy’s algorithm 

The basic algorithm considers that channels are predetermined and assumes only a single 

message is transmitted at a time. The main ideas of the algorithm are to broadcast the 

message through the network as a broadcast scheme and, to store the message at each 

node, so that the agent that arrives at the node from a direction opposite to the broadcast 

can get the message (figure 5.3)  

sender

Message 

Agent 

Link

sender

Message 

Agent 

Forwarding path 



 30

 

 

 

 

 

Figure 5-3  Broadcasting and coping messages in each node 

In figure 5.3, the agent reaches the node after the message has passed. However, unlike 

the simple broadcast scheme, since the node keeps a copy of the message, the agent will 

find the message at the destination node even after the wave of the broadcast has passed. 

A major problem here is to know for how long the node keeps a copy of the message, 

because it is not realistic to keep the copy of the message indefinitely. To determine the 

length of time that a message is kept at a given node, Murphy uses a technique based on 

the technique used for snapshot by Chandy and Lamport[1]. 

The main goal of the technique is to insure that all agents in transit on incoming channels 

while the message is broadcasted on outgoing channels get the message before it is 

deleted, in order to avoid problems such as the one shown in Figure 5.2. For this purpose, 

at each node, a state that can be FLUSHED or OPEN is associated with each incoming 

channel. Initially all channels are OPEN. When a message arrives by a channel the state 

of the channel is changed to FLUSHED and the message is stored locally. At this point, 

sender

Message 

Agent 

Link



 31

the situation where the message and the agent miss each other while in transit (figure 5.2) 

cannot occur since the message will be copied at a node before broadcasted.   

The copy of the message is kept on the source node until it is sure that all agents in transit 

and in opposite direction with the message broadcast have reached the node, i.e. until all 

incoming channels have the state FLUSHED. All incoming channels of a node are 

FLUSHED means that the message has arrived from all incoming channels. Therefore, 

since the channel is FIFO, any agent that comes from these channels has already obtained 

the message from it source node. For example, in figure 5.4 Agent 1 and Agent 2 should 

necessarily receive the message at Node 2 and Node 3 respectively this is because, the 

agents received the message prior to the moment the agents have left Node 1.  It is 

therefore, no more necessary to keep the copy of the message at Node 2 and Node 3. 

 

 

 

 

Figure 5-4  The effect of FLUSHED incoming channels 

Node 2

Node 3

Node 1 

Agent2 

Agent 1 



 32

5.2.2. The Enhanced Algorithm for Multiple message delivery 

The Murphy’s basic algorithm enables delivery of a single message. However, it is 

important to have the possibility to deliver multiple messages. The Murphy’s basic 

algorithm can be used to deliver more than one message. However it requires checking 

the termination of delivery of one message before starting to deliver another message. In 

distributed systems, checking termination of an algorithm is complex and time 

consuming. Therefore allowing concurrent message delivery without the need of 

detecting termination of an algorithm is needed. 

Murphy extended the basic algorithm to provide multiple and concurrent message 

delivery. This algorithm works for messages sent by the same source. However it can be 

easily generalized to deliver messages sent from several sources. 

The main goal of the enhanced algorithm is to insure the delivery of messages by keeping 

only one message active at a time. For this purpose, the channels can have another state 

called BUFFERED (figure 5.5). As in the case of single message delivery the channels 

have OPEN state initially. When a channel transports a message, that message is 

considered to be the active message and the state of the channel becomes FLUSHED. The 

node give the active message to all agents hosted and broadcasts the message in all 

outgoing channel. When an agent arrives at the node, it will be given the active message. 

When a channel that is FLUSHED delivers a message, the message will be stored in a 

buffer queue and the state of the channel will be changed to BUFFERED.  



 33

 

 

 

 

 

 

 

 

 

 

Figure 5-5  Multiple message delivery 

The messages in the buffer queue remain there until the active message is removed. The 

active message is removed when all channels becomes FLUSHED or BUFFERED, since 

storing the active message is no more necessary after that. At this point, Murphy’s 

algorithm clears the active message and makes the state of all channels OPEN. Messages 

in buffer queues are then considered as newly arrived. Here, changing the channels 

having BUFFERED channels to OPEN will not create a problem since the messages 

arrived by it will be considered as new.. 

Active 
message 

Message 

Agent 

Link

M2
M3

M1

M3 

M2 
M3 

M2 

M1 

M1 



 34

5.2.3. The Enhanced Algorithm for Dynamic Network 

Up to now the discussion considers that channels are pre-established. However Murphy 

has also designed an algorithm for dynamic network graph, which is constructed 

dynamically, while the agent moves. This algorithm has one additional responsibility that 

is network graph construction.  The algorithm is done for agents and messages of the 

same sources. However, running the algorithm concurrently can provide guaranteed 

message delivery for agents and messages of different sources. 

The network graph is constructed as follows. Initially only the node on which an agent is 

created is considered as active. When an agent moves from an active node to another 

node, which is not active, the node that the agent arrived at and channel that the agent has 

been transported become active. 

This algorithm works as the one for static graph but sometimes the agent may be forced 

to stay at a node until some messages arrive or delay the activation of construction of an 

incoming channel of a node until some messages are arrived and cleared from the node. 

This is done to handle difficulties caused by the free movement of mobile agents and the 

fact that the graph is constructed by considering all agents as explained below.  

One of the difficulties caused by the free movement of mobile agent is called destination 

ahead of source. This difficulty occurs when mobile agents migrate to a node which have 

incoming channels constructed by other agents. To discuss the difficulty by using an 

example, we assume that there are three nodes called X, Y and Z in the network and X is 

active initially. When X sends an agent a1 to Y, both Y and channel connecting X and Y 

becomes active. Assume that X sends message 1 and 2 and then sends another agent 



 35

called a2 to Z. At this time, node Z and the channel connecting X and Z will be active. If 

a1 leaves Y before message 1 and 2 are arrived, a situation called destination ahead of 

source will occur (figure 5.6). At this point, if the messages are forwarded blindly, 

message order is possibly lost and messages can possibly keep propagating in the 

network without ever being deleted.  The solution they use to solve this difficulty is to 

hold the agent at Z until the message 1 and 2 is received and, when these messages are 

arrived, the messages will be deleted after they are delivered to the detained agent (a1). 

This action inhibits the movement of agent but Murphy argues that this is taken place 

only for a time proportional to a diameter of the network. 

 

 

 

Figure 5-6  Destination ahead of source 

There is also other potential problem called source ahead destination. This is caused 

when a new incoming channel has been constructed while the node or the old incoming 

channels of the node holds messages To discuss this difficulty, we use the above example 

except instead of X sends another agent to Z, assumes that Z sends an agent to Y. Here a 

situation in which Y waits the channel coming from Z to be FLUSHED, before deleting 

message 1 and starting to process message 2. However, the channel coming from Z 

cannot transport message 1(figure 5.7). This situation is called source ahead of 

destination. To solve source ahead of destination problem, the activation of the channel 

Z
Y

X 

 
a2 

M1 
M2 

a1



 36

connecting Z with Y will be delayed until Y catch up with Z. In this example, the channel 

will be delayed until message 2 is processed. 

 

 

 

 

Figure 5-7  Source ahead of destination. 

5.3. Fault tolerant communication algorithm 

In this section, we are going to modify Murphy’s algorithm which is presented in the 

previous section to work in the existence of disconnection. In section 5.3.1, we will 

present the logical model used in the algorithm and in section 5.3.2 and 5.3.3, we will 

present our algorithm for static network. In the last section, we will present our algorithm 

for dynamic network. 

5.3.1. Model 

The logical model (architecture) that is used for the algorithm is a typical network graph 

of nodes and directed channels. The nodes in the logical model represent servers willing 

to host agents and channels that represent links used to connect nodes and that can 

transport both agents and messages. In the algorithm, the channels are assumed to be 

FIFO and directional (figure 5.8). 

a1 
a2 

 
M1 

M2 

X

Y Z



 37

 

 

 

 

 

Figure 5-8  Logical model for the network graph 

The algorithm considers both static and dynamic network graphs. In static network graph, 

the channels are assumed to be established before the algorithm starts in contrast in 

dynamic network graph, channels will be constructed while the agent moves. 

 In static network graph, we assume that there is always a path between two pair of nodes. 

This doesn’t mean that a full connection should exist but a node should be reachable from 

any other node. For example in figure 5.8, there is no direct link between node B and 

Node A but node B can get node A through node D and node C.   

The algorithm assumes that agents have global name, which identify them uniquely, and 

messages have IDs, which are always increasing. It is assumed that the agent name holds 

the name of its creator node or home node.   

We also assume that, it is possible to detect disconnection as well as reconnection. It is 

also assumed that, it is possible to know whether the message which is sent, is delivered 

at the destination or not. 

A

B 

D

G

C 

E



 38

5.3.2. Delivery of Message with Static Network Graph 

We start describing our algorithm with the simplest case where the network graph is 

static that is it is fully constructed prior to delivery of message and one message is 

assumed in the network. We also discuss the algorithm to deliver multiple messages. 

As discussed in the problem statement, the main objective of this study is to provide an 

algorithm that delivers message to a highly mobile software agent even in the existence 

of fault. 

We adapt Murphy’s algorithm discussed in the previous section that does not work with 

the existence of fault. We believe that making assumption on the absence of fault 

specially disconnection is not appropriate, since mobile software agent usually 

recommended in the area where network connection is not reliable. 

Assume that Murphy’s algorithm is applied in the network where the connection is not 

reliable. When a channel is disconnected the message in the channel will be lost, and the 

node to which the channel is an outgoing one can’t send the message through the channel 

(Figure 5.9a, b). In addition, some node may not be able to clear the copy of the message 

stored at node, if one of its incoming channel is disconnected (Figure 5.9c). It seems that 

transportation layer can handle this but this depends on time required to reconnect the 

channel.  For example, if the network is established using TCP, their established TCP 

connections can abort during periods of disconnection and many TCP implementations 

default to timeout values of a few minutes [28]. Therefore Murphy’s algorithm can’t 

provide guaranteed delivery of message in the existence of disconnection particularly for 

extended disconnection. 



 39

 

 

 

 a. Message in transit damaged by disconnection 

 

 

 

 b Node is unable to send message through disconnection channel 

 

 

 

 

 a. Node may be unable to clear the messages if one of its incoming channels is disconnected 

Figure 5-9  The effect of disconnection 

We extend Murphy’s algorithm to work in the existence of disconnection by changing the 

way of message broadcasting. When a message is broadcasted in every channel, the node 

identifies the channel for which the channel is disconnected while transporting the 

message and resend the message when they are reconnected. The broadcasting of 

message will be finished when all channels transports the message. Here we are sure that 

Node 2

 M

Node 1

M

M

Node 2

 M

Node 1

M
M

Node 2

 M

Node 1

M M Damaged message 



 40

message in the node will not be cleared before the successor of the node have it, since 

broadcasting of message is finished when all channels transports the message. 

5.3.3. Multiple Message Delivery  

Since Murphy extends the algorithm that she designed for single message delivery to 

provide guaranteed delivery of multiple message, the algorithm does not provide 

guaranteed message delivery in the existence of disconnection. In this section we 

extended Murphy’s multiple messages algorithm to work in the existence of 

disconnection. As in the case of Murphy’s algorithm, our algorithm is limited for 

messages of a single source. However running this algorithm concurrently will provide 

guaranteed delivery of message of any source. 

As in the case of single message delivery, disconnection can be handled by changing the 

way of message broadcasting.  That is, if some of the channel is disconnected during 

broadcasting, the message will be sent after the channel is reconnected and message 

broadcasting will be end after the message sent by all channels. However, delaying the 

node work until the successor is reconnected is not reasonable, since other messages may 

be waiting in the buffer queue. In addition the failure of message broadcasting in 

channels don’t have an effect on the node which broadcasts the message but have effect 

on the successor of the node. 

We modify our algorithm in the way that it doesn’t affect the work of a node as follows. 

The node broadcasts the message to all connected outgoing channels and then identifies 

the disconnected channels before broadcasting and while broadcasting. If there are 

disconnected channels, the node stores the message broadcasted with the channel ID in 



 41

the temporary store. The broadcasting is finished after sending the message in all 

connected channels and recording the message with IDs of disconnected channels.  

When reconnection of an outgoing channel is sensed, a node sends the messages which 

are stored in temporary store with the ID of the channel. After insuring that the message 

reached at the destination of the channel, the ID of the channel is removed from all 

records of temporary store. Since storing messages in temporary store is not realistic, our 

algorithm deletes records containing one channel ID when that channel ID is removed 

from the record. 

5.3.4. Dynamic Graph 

Although the solution proposed so far provides guaranteed delivery of message in the 

presence of mobility, the necessity of knowing the nodes’ neighbor in advance is 

sometimes unreasonable in dynamic environment of mobile software agents. 

Furthermore, dealing with all nodes including nodes which may not be visited by mobile 

software agent, will make the algorithm somewhat complex. Particularly, in the existence 

of disconnection, the time to update nodes which may not be visited by the agent, will 

have an effect on the efficiency of the algorithm.  

As in the case of the algorithm for static Network graph, our algorithm for dynamic 

network graph adapts Murphy’s algorithm. However, the adaptation is not only on 

handling disconnection but also on the construction of the network and the way messages 

are delivered and sent. These modifications is needed to remove the following drawbacks 

of Murphy’s algorithm 



 42

• Murphy’s algorithm for dynamic network graph can’t be used to guarantee 

delivery of message in the existence of disconnection as discussed on previous 

section, since it is extended from her algorithm for static network 

• The algorithm sometimes inhibits mobile agent from movement and delay the 

activation of the channel to solve two difficulties (section 5.2.) called 

destination ahead of source and source ahead of destination respectively. 

Solutions for the problems 

Removing the two problems discussed above will make the algorithm to work without 

inhibiting agents from movement and without delaying activation of a channel. As 

discussed on section 5.2 the two difficulties result from the fact that the network is 

constructed by considering all agents of a single source. Therefore, to remove the 

drawbacks, network graph should not be constructed by considering all agents. 

Considering different network graphs for each agent will solve the problem.  

The algorithm that we develop considers different network graphs for each agent. As 

Murphy’s algorithm, our algorithm assumes messages as well as the agent are from the 

same source. However running the algorithm concurrently will provide guaranteed 

message delivery in the existence of fault. 

In the next section, we present first the algorithm by assuming the existence of only one 

agent exists in the network and the extended algorithm that doesn’t make such 

assumption as solutions for the problem above. 



 43

Basic Algorithm For Single agent 

The algorithm presented in this section, works in the same way as Murphy’s algorithm 

except that it assumes only one agent in the network and handles disconnection. Here the 

two difficulties, source ahead of destination and destination ahead of source cannot occur. 

This is because there is only one agent in the network and the graph is only constructed 

by it.  

There are problems resulting from the fact that the network is constructed dynamically. 

One of the difficulties is, the node doesn’t know all the incoming as well as the outgoing 

channels before the agent is destroyed. For example, in figure 5.10, at time t1, node 1 had 

three incoming channels and at t2, it has three incoming channels. The other difficulty is 

all the channels couldn’t be constructed at the same time; so it is not possible for some 

messages to be transported by all channels. For example, in figure 5.10, the channel that 

connects node 2 and node 1 cannot transport m1. The third difficulty is it is very difficult 

to delete a message from the node. For example in figure 5.10, if the message at node 2 

were cleared at t1, agent 1 can’t get m1 at t2.  This problem mainly affects the clearing of 

messages at a node since clearing of message depends on the state of the incoming 

channels. Therefore, modifying the way messaged cleared at the node will removes the 

problem resulted from the difficulties discussed above.  

 

 

 



 44

 

 

 

 

 

 

Figure 5-10  The effect of constructing the network graph dynamically 

 

To remove these problems we make  

• the network graph to start from the home of the agent which can be extracted from 

the agent name,  

• the node to hold all messages arrived at a node,  

• messages to have a sequential ID which indicate their order and  

• the agent to retrieve the messages by themselves according to the message 

sequential ID.  

In our algorithm for dynamic network when the message arrives at a node while the node 

holds another message, the message will also be considered as active message in the node 

rather than being added in the buffer queue of the channel. 

221

A

1

AM1 

1

AM1

t0 t1 t2 



 45

Message delivery in this algorithm is done as follow; When a message arrives at a node, 

the node delivers it to the agent, to which the network graph is constructed, and the 

message broadcast in all outgoing channels of the network graph. When an agent arrives 

at the node, it is allowed to retrieve the messages from the node. 

Since message is broadcasted with all outgoing channel that has been already constructed, 

some node may not contain all messages (figure 5.11). In this algorithm, since the agent 

constructs the channels, this will not create problem. This is because the agent will get the 

messages broadcasted before constructing the new channel.  

 

 

 

 

 

Figure 5-11  Message content at different node is different  

Clearing the message at the node is important because storing the message indefinitely is 

not a realistic solution. In addition, storing the message after the agent is destroyed is not 

necessary. Therefore, clearing of messages on the node should be done after the agent is 

destroyed. The network graph is no more important after the agent to which it is 

constructed is destroyed. Therefore the algorithm should remove the network graph, 

A
M1 A

M1
M2 AM2

t0 t1 



 46

when the agent to which the graph is constructed, is destroyed. Clearing of the message 

can be done when the network graph is removed. 

Messages stored at a node will be removed when the network graph is removed. The 

network graph is removed when the agent for which the network graph is constructed, is 

destroyed. When a node destroys the agent, it informs the node that creates the agent. The 

node, which creates the agent, deletes the messages at the node, removes itself and sends 

the information to its successors and the successors do the same as their predecessor. 

As in the case of the static network graph, in dynamic network graph disconnection may 

occur at any time. Therefore handling disconnection is important. Our algorithm for 

dynamic network handles disconnection in the same way as in the case of static network 

graph, on which multiple messages are assumed in the network graph. This means, by 

changing the way of message broadcasting as discussed in section 5.4. 

Extended Algorithm for Multiple agents 

The algorithm for single agent can be run concurrently to guarantee delivery of message 

to multiple agents. Concurrency will be achieved by considering different network graph 

for each agent. Here, one node can be a part of more than one network graph. Since 

message source node can be a part of two network graphs, it may be difficult to the node 

to know which network graph to use to broadcast the message.  Since our algorithm deals 

with delivery of message to a single agent, it is possible to know to which agent the 

message is sent. Therefore, in our algorithm message source node will use the network 

graph constructed by an agent to which the message is sent. 



 47

5.5. Summary 

In this chapter, we presented an algorithm that provides a guaranteed delivery of message 

in the existence of disconnection.  The algorithm adapts Murphy’s algorithm and works 

in the existence of disconnection.  

The algorithm that we have designed, assumes the channels are FIFO. Even if in reality, 

physical channels are not usually FIFO channels, there are protocols like TCP, which can 

be used to provide virtually FIFO channels. Therefore, it is possible to implement the 

algorithm by using the existing technology. 

 



 48

6. Implementation 

In this chapter, the prototype and the components needed to implement the prototype will 

be presented. The prototype has two major components (subsystems). One of the 

subsystems is to provide reliable message delivery to mobile software agent by 

implementing the algorithm presented in chapter 5, and the other subsystem simulates a 

mobile software agent system. Simulation of mobile software agent is needed because 

developing the mobile software agent system is beyond the scope of the study. 

Experimental settings to test the prototype and analysis of the experiment will be 

presented in this chapter. The prototype is implemented on wired LAN environment. 

Since disconnection is rare in such environment, we decided to physically simulate 

disconnection, by unplugging cables. 

In section 6.1, we will discuss about the subsystem that implements the algorithm 

presented in chapter 5. In section 6.2, we discuss about the mobile software agent 

simulator. In sections 6.3, 6.4 and 6.5, the implementation details of the prototype, the 

experimental settings and analysis of the result will be presented. Finally, we will discuss 

the feasibility of using our system in real mobile agent systems. 

6.1 Communication System 

The algorithm discussed in the previous chapter can be applied to develop a subsystem 

that can provide a guaranteed message delivery to mobile software agents. The objectives 



 49

and the requirements of the subsystem that implements the algorithm presented in chapter 

5 are discussed below. From now wards, we will refer the subsystem as CommSystem. 

Objectives 

The objectives of developing a communication system for mobile software agents are: 

• To enable agents to communicate transparently 

• To provide a guaranteed delivery of message to mobile software agents 

by applying the algorithm presented in this paper. 

Requirements 

The system should have the following properties 

• It should be flexible to support dynamic or static network graph  

• It should be able to manage channels according to the type of the graph. 

• It should be able to manage the messages in the node as discussed in 

the study 

• It should be able to deliver messages to mobile software agent.  

• It should be able to broadcast the message as discussed in the study 



 50

Data Flow Diagram (DFD) of CommSystem 

 

 

 

 

 

 

 

 

 

 

 

 

FIFO 
channel FIFO 

channel 

Message Manager

Connection 
Manager 

Node Manager 

Agent Manager 

 
Mobile Agent Network Administrator 

 
Channel Manager 

Actors 

Subsystems 



 

Description of the DFD of CommSystem 

Actors 

Mobile Software Agent: agents, which use the system to send and receive messages.  

Network Administrator: a person who set network type and channels 

Physical Component 

FIFO-Channel: it is a channel used to send and receive messages from the neighboring 

nodes. The FIFO channel can be implemented by using TCP socket. 

Subsystems 

Message Manager is used to manage the active message. In other words, it is used to 

keep copies of messages in the node and to remove the messages from the node as 

discussed in the study. This subsystem will also enable nodes to broadcast messages 

accordingly. 

Connection Manager is used to detect disconnection and reconnection of channels, and it 

makes other subsystems to know the disconnection and reconnection of a channel. 

Agent Manager is used to manage agents. It delivers messages to the agent by using 

different mechanisms provided by the mobile software agent system.  

Channel manager is used to manage channels. It keeps track of the state of the channels. 

The channels can be used to transport messages and agents. The channel manager passes 

the agent transported to agent manager and the message transported to message manager. 



 

Node Manager is used to setup channel and create active message storage, temporary 

storage and buffer queues. 

6.2 Mobile Agent System Simulator 

As discussed in the beginning of the chapter, we need to develop the system that 

simulates mobile software agent system. To simulate the mobile software agent system, 

we tried to identify the important characteristics of the mobile software agent system for 

the study. Accordingly, the following key characteristics of the mobile software agent 

that are needed for the study are identified 

• The mobile software agent should give names to agents such that each agent has 

unique name and the name should contain the name of the node that has created 

the agent 

• The node should identify the agent hosted there 

• The agent should to be able to move freely 

• The agents should be able to communicate to each other 

We have simulated the agent as a message. It is represented by its name which is a text. 

The message sent by the agent will have a name (ID), content, the name of the sender 

agent and the name of the receiver agent. The creator node gives a name to the agent and 

to achieve uniqueness throughout the network, the agent name will contain the node 

name. 



 

Each node can register, deregister and search mobile software agent hosted. When an 

agent arrives at a node, it will be registered at a node and when it migrates from the node, 

it should be deregistered from the node. In addition, the node should be able to search an 

agent by accepting the agent name. 

The movement and the communication of the agent is simulated as follow” 

− movement :-a hosting node decides randomly which agent should move 

to which node and sends the selected agent to the selected node.  

− communication:- a node is designed to provide an interface which lists 

the agent previously and currently hosted and the user composes the 

message and decides to which agent the message should be sent to. 

− message delivery: the system will display the message and the agent 

together when a message is arrived. 

Generally, the mobile agent simulator which is needed to demonstrate the developed 

algorithm on the previous chapter, should simulate the agent, the free movement of the 

agent and communication among the agents.  



 

The Data Flow Diagram for the simulated software agent system 

 

 

 

 

 

 

  

 

Naming 

Migration 

Communication 

Hosting 

Creator 

Actor

User 

 
CommSystem 

Subsystems

External 
System 



 

Description of the DFD of Mobile Software Agent System Simulator 

In the DFD the actor, the external system and, the subsystems of the system, which 

simulate the mobile software agent, are shown. The user is an actor, which involves on 

creating an agent and sending a message to an agent. The CommSystem is an external 

system, which is presented on the above chapter. The subsystems shown in the DFD as 

part of the system are described as follow. 

− Creator subsystem: is used to create and destroy agents according to user 

commands, 

− Naming Subsystem: is used to give unique name to the agent 

− Migration subsystem: is used to decide when and where the agent leaves 

the node. 

− Hosting subsystem: is used to register agents when hosted and to 

deregister them when they leave. This subsystem will also provide 

searching service. 

− Communication subsystem is used to enable users to send messages to an 

agent. 



 

6.3 The prototype 

According the requirements discussed in the above section, a prototype for static network 

graph is developed. The prototype implements the CommSystem and the system which 

simulate the mobile software agent system. It is developed to provide delivery of 

messages of a single source. 

The prototype has two versions. The first version doesn’t assume disconnection and have 

component to test disconnection. The second version works in the existence of 

disconnection and have a component that detects disconnection and reconnection of a 

channel. 

As discussed in the previous section, channels are implemented by TCP socket. Using 

socket as a channel introduce a difficulty on detecting disconnection. It is not possible to 

get the connection status of the channel from TCP, since TCP does not provide any 

notification when a network link is lost. Therefore the successor made to send a special 

message (we call it heartbeat), to the predecessor periodically. Period will be set by the 

network administrator. The disconnection manager subsystem will detect the 

disconnection of outgoing channel by observing the heartbeats.  



 

The User Interface for the prototype 

The prototype provides user interface which includes interface to create agents, send 

messages to an agent and display the messages that are sent to hosted agent. The 

interfaces used are described as follow. 

1. Interface used to create agents and send messages to an agent 

 

 

Figure 6-1 User interface used to create and send message 

In figure 6.1 the interface that can be used by the user to create an agent and send a 

message to an agent in the network without specifying the location of the agent is 

displayed. When the user clicks the create button the agent will be created and it becomes 

active and when the user click the send message, the dialog box shown in figure 6.2  will 

appear and the user can use it to send messages to an agent. 



 

 

Figure 6-2Communication interface 

2. Interface used to post the message send to an agent 

 

Figure 6-3 Interface used to post message send to an agent 

When a message arrives at a node and if it is sent to an agent, the hosting node will post 

agent name and message content by using the dialog box displayed in figure 6.3 



 

6.4 Languages, Tools and Experimental settings 

In the previous sections, we have described the prototype used to demonstrate the study. 

In this section, we will describe the programming language and the tools in the 

development of the prototype, and the excremental settings to test the prototype. 

The choice of the programming language is one of the important issues in system 

development. To that end, we have selected java to develop the prototype. This is 

because of the experience of the researcher, free availability of java and easiness of 

network programming in java. 

The other important issue, that determines the efficiency of the system development is the 

selection of development tools. Some of the tools that we use to develop the prototype are 

j2sdk 4.2 and java IDS: Jbuilder and Jbeans. 

We have used three computers in the local area network of the department of computer 

science, AAU. These computers can have any capacity. Since the prototype is 

demonstrated in wired local area network and disconnection is rare there, we have 

decided to simulate disconnection physically, by unplugging cables. 

6.5 Analysis of the Result 

By using the prototype, we were able to demonstrate that the developed algorithm for 

static network graph works. The demonstration is done into three steps. In the first step, 

the prototype that implements Murphy’s algorithm is tested, in the second step, the same 

prototype is tested in the presence of disconnection and in the third step, the prototype 

that is modified to have connection manager, is tested in the presence of disconnection.  



 

In both first and third steps the algorithm successfully. In the second step, when a cable is 

unplugged and then plugged, the prototype stops working.  

A guaranteed message delivery by the prototype that implements Murphy’s algorithm, is 

fully achieved in the absence of disconnection (i.e., all messages that are sent are 

broadcasted in every node in the network, and the messages are delivered to all agents).  

The test results of the prototype that implements our algorithm (have a disconnection 

manager to tolerate disconnection) are the following. All messages that are sent, was 

successfully broadcasted in every node in the network graph. However, some agents 

didn’t get all the messages broadcasted, because they are damaged by the disconnections. 

We can conclude that an agent is damaged if it is not displayed in any node. This is 

because the prototype will display the agent in the node. The failure of message delivery 

due to damage of the agent cannot be counted as a failure of the algorithm, since in the 

algorithm; it is assumed that the channels should not fail while transporting the agent.  

6.6 Discussion 

Form the demonstration of the developed algorithm, we have arrived at the following 

remarks. It is very difficult to implement the communication system without 

implementing the mobile software system since the algorithm requires that the agent and 

the message should be transported together. Therefore, implementing our algorithm 

requires the development of a mobile software agent system, which is beyond the scope 

of this study. However, we are able to demonstrate the algorithm works by using a 

system that simulate mobile software agent. 



 

To implement the algorithm without simulation, what we need is the mobile software 

agent that uses FIFO channel to transport message and agent. Since most of java mobile 

agents like Aglet develop agent migration on top of socket, using FIFO channel to 

transport the message is not difficult.  In addition the mobile software agent should 

provide a naming service, which gives unique name to each agent. Since this is also 

already provided most of mobile agent, this is also not difficult. Lastly to implement the 

algorithm, the mobile software agent system needs to have a mechanism to deliver 

message to the agent. This also can be achieved by using Java space.   



 

7. Conclusions 

7.1 Conclusions 
Mobile software agents are becoming an important tool to develop distributed 

applications particularly in environments with unreliable connections is unreliable and 

low bandwidth.  Mobile Software agent technology is emerging as an important area for 

computing research. It is posing many challenges which should be overcome in order to 

use this technology to develop distributed applications. Guaranteed message delivery in 

the existence of fault is one of the challenges that need to be solved. 

In this thesis we have developed an algorithm that guarantees the delivery of message to 

highly mobile agents in the existence of fault, more specifically disconnection. We also 

presented the implementation issues of the algorithm and demonstrated the algorithm for 

the static network by developing a prototype. Since in our algorithm we required to 

transport the agent and the message together in a FIFO channel, we were unable to use 

the existing mobile software agent system to develop the prototype. However, we 

developed a system that simulate mobile software agent to demonstrate the algorithm that 

has been developed.  



 

7.2 Contribution of the study 

The contributions of the study are: (1) Murphy’s algorithm is extended to work in the 

existence of disconnection. (2) The newly developed algorithm removes Murphy’s 

algorithm drawbacks (Murphy’s algorithm drawbacks are inhibition of the movement of 

agents and delays of activation of channels.) (3) The implementation issues of the 

developed algorithm are identified.  

7.3 Future Work 

The algorithm is tested on the available wired local area network. Thus, further validation 

should be made on the effectiveness of the algorithm on different LANs and WANs. In 

addition, since only the version the algorithm for static network graph has been 

demonstrated, the version of algorithm for dynamic network should be demonstrated. 

Since the algorithm correctness is not proved in this thesis, it should be formally proved. 



 

References  

[1] K. Mani Chandy , Leslie Lamport, Distributed snapshots: determining global 

states of distributed systems, ACM Transactions on Computer Systems (TOCS), 

v.3 n.1, p.63-75, Feb. 1985 

[2] Mikael Berg “Software agent frame work technology” Linkoping University 

2000 

[3] Roberto Silveira Silva Filho “The Mobile Agents Paradigm” Department of 

Information and Computer Science University of California, Irvine 1998 

[4] T. Middelkoop and A. Deshmukh "Mobile Agents for Collaborative Design and 

Analysis," in 1997 International CIRP Design Seminar,Oct. 1997 

[5] L. Levison, W. Thies, and S. Amarasinghe, “Providing web search capability for 

low-connectivity communities,” Proceedings of the 2002 International 

Symposium on Technology and Society, Raleigh, North Carolina, 2002 

[6] Freeman Yufei Huang “Communication Infrastructures and Protocols for Mobile 

Agent”  December 2000, accessed on October 12 2003 

[7] Anand R. Tripathi Neeran M. Karnik Manish K. Vora Tanvir Ahmed Ram D. 

Singh “Mobile Agent Programming in Ajanta” Proceedings of the 19th 

International Conference on Distributed Computing Systems 1999 



 

[8] Jiannong Cao, Xinyu Feng, , Jian Lu,  and Sajal K. Das “Design of Adaptive and 

Reliable Mobile Agent Communication Protocols” Proceedings of the 22nd 

International Conference on Distributed Computing Systems 2002 

[9] DavidWong, Noemi Paciorek, and Dana Moore, “Java-based mobile agent”, 

accessed on October 12,2003 

[10] Stefan Fünfrocken “Transparent Migration of Java-Based Mobile Agents” 

Proceedings of the Second International Workshop on Mobile Agents 1998 

[11] Stefan Pleisch, Andre Schiper “Modeling Fault-Tolerant Mobile Agent 

Execution as a Sequence of Agreement Problems” Proceedings of 19th IEEE 

Symposium on Reliable Distributed Systems 2000 

[12] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli “Engineering Mobile-agent 

Applications via Context-dependent Coordination” IEEE Transactions on 

Software Engineering, 2002 

[13] Amy L. Murphy “Enabling the rapid development of dependable of development 

applications in the mobile environment” Washington University August, 2000 

[14] Joachim Baumann, Fritz Hohl, Nikolaos Radouniklis, Kurt Rothermel, and 

Markus Stra\sser “Communication concepts for mobile agent systems” In 

Proceedings of the First International Workshop on Mobile Agents (MA '97), 

pages 123-135, Berlin, Germany, April 1997. Springer Verlag. 



 

[15] Pawel T. Wojciechowski, Peter Sewell “Nomadic Pict: Language and 

Infrastructure Design for Mobile Agents” Computer Laboratory, University of 

Combridge” 1999 

[16] Flávio Morais de Assis Silva, Raimundo José de Araújo Macêdo “Reliability 

Requirements in Mobile Agent Systems” Proceedings of the Second Workshop 

on Tests and Fault Tolerance (II WTF 2000), 15th-16th july 2000 

[17] Peter Sewell, Pawel T. Wojciechowski, and Benjamin C. Pierce. “Location 

independent communication for mobile agents: A two-level architecture” In 

Internet Programming Languages, LNCS 1686, pages 1--31. Springer, 1999. 

[18] Robert S. Gray “Agent Tcl: A flexible and secure mobile agent system”, 30 June 

1997 

[19] Yolande Berbers, Bart De Decker, Wouter Joosen “Infrastructure for mobile 

agents” Department of Computer Science, KULeuven 1996 

[20] V. Roth. “Scalable and secure global name services for mobile agents” 6th 

ECOOP Workshop on Mobile Object Systems: Operating System Support, 

Security and Programming Languages June 2000 

[21] Jonathan Dale, David C. DeRoure “A Mobile Agent Architecture for Distributed 

Information Management” Proceedings of the International Workshop on the 

Virtual Multicomputer 1997 



 

[22] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet. “Concordia: 

An infrastructure for collaborating mobile agents. In Proceedings of the First 

International Workshop on Mobile Agents (MA '97), volume 1219 of Lecture 

Notes in Computer Science, Berlin, April 1997 

[23] Asis Unyapoth, Peter Sewell “Nomadic Pict: Correct Communication 

Infrastructure for Mobile Computation” ACM SIGPLAN Notices 2001 

[24] Sebastian Fischmeister, Giovanni Vigna, Richard A. Kemmerer “Evaluating the 

Security of Three Java-Based Mobile Agent Systems” Proceedings of the 5th 

International Conference on Mobile Agents  2001 

[25] Frederick Knabe, “An Overview of Mobile Agent Programming”, Selected 

papers from the 5th LOMAPS Workshop on Analysis and Verification of 

Multiple-Agent Languages, p.100-115, June 24-26, 1996  

[26] Antonio Carzaniga,  Gian Pietro Picco, Giovanni Vigna “Designing distributed 

applications with mobile code paradigms” Proceedings of the 19th international 

conference on Software engineering 1997 

[27] E.W. Dijkstra and C. Scholten. “Termination detection for diffusing 

computations” Information Processing Letters, 1980. 

[28] L. Eggert  “TCP Abort Timeout Option” The Internet Society (2004), 2004, 

accessed on May 27,2004 



 

[29] Robert Gray, David Kotz, Savrab Nog, Daniela Rus, Georgo Cybenko “Mobile 

Agents: The Next Generation in Distributed Computing” Darthmouth College 

1997 

[30] Christos Bohoris “Network performance management using Mobile Agents” 

Univeristy of Surrey, June 2003 

[31] David Kotz, Robert S. Gray “Mobile Agents and the Future of the Internet” In 

ACM Operating Systems Review 33(3), August 1999, pp. 7-13. 

[32] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli, “Context-dependency in 

Internet-agent Coordination”, Università di Modena e Reggio Emilia, 2000 

[33] Clements, P. E., Papaiannou, T. and Edwards, J. M., "AGLETS: Enabling the 

Virtual Enterprise", Proc. the 1st International Conference on Managing 

Enterpriser - Stakeholders, Engineering, Logistics and Achievement (MESELA 

'97) , July 1997 

[34] Giacomo Cabri, Letizia Leonardi, Franco Zambonelli “Mobile-Agent 

Coordination Models for Internet Applications” University of Modena and 

Reggio Emilia, 2000 

[35] Carriero & D. Gelernter, "Linda in Context", Communications of the ACM, 1989 

[36] J. Bayman, M. Hohle, K. Rothernel, M. Straber “Mole – Concepts of a mobile 

agent system”, Kluwer Academic Publishers   Hingham, MA, USA , 1998 


