
Chapter 3. Introduction to SQL

Table of contents

• Objectives
• Introduction to SQL
• Context
• SQL overview
• The example company database

– The EMP table
– The DEPT table
– The data contained in the EMP and DEPT tables

• SQL SELECT statement
– Simple example queries
– Calculating values and naming query columns

∗ Altering the column headings of query results
• The WHERE clause

– Basic syntax of the WHERE clause
– Examples of using the WHERE clause
– The use of NOT
– The use of !=
– Retrieving from a list of values
– Querying over a range of values
– Searching for partial matches

• Sorting data
– Descending order
– A sort within a sort

• Handling NULL values in query results (the NVL function)
– WHERE clauses using IS NULL and IS NOT NULL
– The NVL function

• REFERENCE MATERIAL: SQL functions
– Arithmetic functions
– Character functions
– Date functions
– Aggregate functions

• Activity - EMPLOYEE AND DEPARTMENT QUERIES
• Review questions
• Discussion topics

Objectives

At the end of this chapter you should be able to:

• Write SQL queries to examine the data in the rows and columns of rela-
tional tables.

1

• Use string, arithmetic, date and aggregate functions to perform various
calculations or alter the format of the data to be displayed.

• Sort the results of queries into ascending or descending order.

• Understand the significance of NULL entries and be able to write queries
that deal with them.

Introduction to SQL

In parallel with this chapter, you should read Chapter 5 of Thomas Connolly
and Carolyn Begg, “Database Systems A Practical Approach to Design, Imple-
mentation, and Management”, (5th edn.).

This chapter introduces the fundamentals of the Structured Query Language,
SQL, which is a worldwide standard language for the querying and manipulation
of Relational databases. This chapter covers the basic concepts of the language,
and sufficient information for you to write simple but powerful queries. The fur-
ther chapters on the SQL language will build on this knowledge, covering more
complex aspects of the query language and introducing statements for adding,
changing and removing data and the tables used to contain data. The mate-
rial you will cover in the SQL chapters provides you with a truly transferable
skill, as the language constructs you will learn will work in virtually all cases,
unchanged, across a wide range of Relational systems.

Context

This unit presents the basics of the SQL language, and together with the succeed-
ing units on SQL, provides a detailed introduction to the SQL language. The
unit relates to the information covered on Relational Algebra, in that it provides
a practical example of how the operations of the algebra can be made available
within a higher level, non-procedural language. This chapter also closely relates
to the material we will later cover briefly on query optimisation in a chapter
called Database Administration and Tuning, as it provides the basic concepts
needed to understand the syntax of the language, which is the information on
which the query optimisation software operates.

There are a number of SQL implementations out there, including Microsoft
Access (part of the Office suite), Microsoft SQL server and Oracle. There are also
some open-source ones such as MySQL. You should make sure you have an SQL
implementation installed for this chapter. Consult the course website for more
information about the recommended and/or compatible SQL implementations.
Although SQL commands in these notes are written in generic terms, you should
be mindful that SQL implementations are different and sometimes what is given
here may not work, or will work with slight modification. You should consult

2

the documentation of your software on the particular command should what is
given here not work with your SQL implementation.

SQL overview

SQL is a language that has been developed specifically for querying and ma-
nipulating data in database systems. Its facilities reflect this fact; for example,
it is very good for querying and altering sets of database records collectively
in one statement (this is known as set-level processing). On the other hand, it
lacks some features commonly found in general programming languages, such
as LOOP and IF…THEN…ELSE statements.

SQL stands for Structured Query Language, and indeed it does have a structure,
and is good for writing queries. However, it is structured rather differently to
most traditional programming languages, and it can be used to update informa-
tion as well as for writing queries.

SQL, as supported in most database systems, is provided via a command-line
interface or some sort of graphical interface that allows for the text-based entry
of SQL statements. For example, the following SQL statement is a query that
will list the names of departments from a database table (also known as a
relation) called DEPT:

SELECT DNAME FROM DEPT;

SQL language consists of three major components:

• DDL (data definition language): Used to define the way in which
data is stored.

• DML (data manipulation language): Allows retrieval, insertion of
data, etc. (This is sometimes called the ‘query’ language.)

• DCL (data control language): Used to control access to the data. For
example, granting access to a user to insert data in a particular table.

The query language (DML) is very flexible in that it can be used to express
quite complicated queries, sometimes very concisely.

One initial problem that people just starting to learn the language encounter is
that it can sometimes be difficult to tell how hard a query will be to express in
SQL from its natural language specification. That is, some queries that sound
as though they will be hard to code in SQL from their description in a natural
language such as English, turn out to be very straightforward. However, some
simple-sounding queries turn out to be surprisingly difficult.

As you work through the SQL chapters in this module, you will build up expe-
rience and knowledge of the kinds of queries that are straightforward to write
in SQL.

3

The data manipulation language (DML) of SQL allows the retrieval, insertion,
updating and removal of rows stored in relational tables. As mentioned above,
numbers of rows can be altered in any one statement, and so DML is a very
powerful tool.

The data definition language (DDL) is used to create, change the structure of or
remove whole tables and other relational structures. So whereas you would use
the INSERT statement of the DML to insert new rows into an existing table,
you would use the DDL CREATE TABLE statement to establish a new table
in the first place.

The data control language (DCL) defines activities that are not in the categories
of those for the DDL and DML, such as granting privileges to users, and defining
when proposed changes to a databases should be irrevocably made.

The example company database

Throughout this and the succeeding chapters on SQL, we are going to use a
standard pair of tables and set of data on which to write SQL statements. This
standard data set comprises the tables EMP and DEPT. The structure of each
is first described, and then the example records for each are presented.

The EMP table

The EMP table stores records about company employees. This table defines and
contains the values for the attributes EMPNO, ENAME, JOB, MGR, HIRE-
DATE, SAL, COMM and DEPTNO.

• EMPNO is a unique employee number; it is the primary key of the em-
ployee table.

• ENAME stores the employee’s name.

• The JOB attribute stores the name of the job the employee does.

• The MGR attribute contains the employee number of the employee who
manages that employee. If the employee has no manager, then the MGR
column for that employee is left set to null.

• The HIREDATE column stores the date on which the employee joined the
company.

• The SAL column contains the details of employee salaries.

• The COMM attribute stores values of commission paid to employees. Not
all employees receive commission, in which case the COMM field is set to
null.

4

• The DEPTNO column stores the department number of the department in
which each employee is based. This data item acts a foreign key, linking the
employee details stored in the EMP table with the details of departments
in which employees work, which are stored in the DEPT table.

The DEPT table

The DEPT table stores records about the different departments that employees
work in. This table defines and contains the values for the attributes as follows:

• DEPTNO: The primary key containing the department numbers used to
identify each department.

• DNAME: The name of each department.

• LOC: The location where each department is based.

The data contained in the EMP and DEPT tables

The data in the EMP table contains the following 14 rows:

The DEPT table contains the following four rows:

5

SQL SELECT statement

SQL queries can be written in upper or lower case, and on one or more lines.
All queries in SQL begin with the word SELECT. The most basic form of the
SELECT statement is as follows:

SELECT <select-list> FROM <table-list>

It is often useful to separate the different parts of a query onto different lines,
so we might write this again as:

SELECT <select-list>

FROM <table-list>

Following the SELECT keyword is the list of table columns that the user wishes
to view. This list is known as the select-list. As well as listing the table columns
to be retrieved by the query, the select-list can also contain various SQL func-
tions to process the data; for example, to carry out calculations on it. The
select-list can also be used to specify headings to be displayed above the data
values retrieved by the query. Multiple select-list items are separated from each
other with commas. The select-list allows you to filter out the columns you
don’t want to see in the results.

The FROM keyword is, like the SELECT keyword, mandatory. It effectively
terminates the select-list, and is followed by the list of tables to be used by
the query to retrieve data. This list is known as the table-list. The fact that
the tables need to be specified in the table-list means that, in order to retrieve
data in SQL, you do need to know in which tables data items are stored. This
may not seem surprising from the perspective of a programmer, or database
developer, but what about an end-user? SQL has, in some circles, been put
forward as a language that can be learned and used effectively by business users.
We can see even at this early stage, however, that a knowledge of what data is
stored where, at least at the logical level, is fundamental to the effective use of
the language.

6

Exercise 1 - Fundamentals of SQL query statements

1. What keyword do all SQL query statements begin with?

2. What is the general form of simple SQL query statements?

Simple example queries

Sample query 1 - the names of all employees

Suppose we wish to list the names of all employees. The SQL query would be:

SELECT ENAME

FROM EMP;

The single ENAME column we wish to see is the only entry in the select-list
in this example. The employee names are stored in the EMP table, and so the
EMP table must be put after the keyword FROM to identify from where the
employee names are to be fetched.

Note that the SQL statement is terminated with a semi-colon (;). This is not
strictly part of the SQL standard. However, in some SQL environments, it
ensures that the system runs the query after it has been entered.

The result of this query when executed is as follows (note that your system
might reflect this in a different way to what is shown here):

7

As you can see, the query returns a row for each record in the table, each row
containing a single column presenting the name of the employee (i.e. the value
of the DNAME attribute for each EMP record).

Sample query 2 - all data (rows and columns) from the DEPT table

There are two usual ways to list all data in a table. The simplest is to use a
shorthand notation provided in SQL to list all the columns in any table. This
is done simply by specifying an asterisk ‘*’ for the select-list as follows:

SELECT *

FROM DEPT;

The asterisk is called a wild card, and causes all attributes of the specified table
to be retrieved by the query.

Note that as it is the details of the DEPT table we wish to view, it is the DEPT
table this time that appears in the table-list following the FROM keyword.

8

The use of * in this way is a very easy way to view the entire contents of any
table. The alternative approach is simply to list all of the columns of the DEPT
table in the select-list as follows:

SELECT DEPTNO, DENAME, LOC

FROM DEPT;

The result of executing either of these queries on our DEPT table at this time
is the following:

A potential problem of using the asterisk wild card, is that instead of explicitly
listing all the attributes we want, the behaviour of the query will change if the
table structure is altered — for example, if we add new attributes to the DEPT
table, the SELECT * version of the query will then list the new attributes.
This is a strong motivation for avoiding the use of the asterisk wild card in most
situations.

Sample query 3 - the salary and commission of all employees

If we wish to see details of each employee’s salary and commission we would use
the following query that specifies just those attributes we desire:

SELECT EMPNO, ENAME, SAL, COMM

FROM EMP;

In this example, we have included the EMPNO column, just in case we had any
duplicate names among the employees.

The result of this query is:

9

Calculating values and naming query columns

Sample query 4 - example calculation on a select-list

In the queries we have presented so far, the data we have requested has been one
or more attributes present in each record. Following the principle of reducing
data redundancy, many pieces of information that are useful, and that can be
calculated from other stored data, are not stored explicitly in databases. SQL
queries can perform a calculation ‘on-the-fly’ using data from table records to
present this kind of information.

The salary and commission values of employees we shall assume to be monthly.
Suppose we wish to display the total annual income (including commission)
for each employee. This figure for each employee is not stored in the table,
since it can be calculated from the monthly salary and commission values. The
calculation is simply 12 times the sum of the monthly salary and commission.

10

A query that retrieves the number and name of each employee, and calculates
their annual income, is as follows:

SELECT EMPNO, ENAME, 12 * (SAL + COMM)

FROM EMP;

The calculation here adds the monthly commission to the salary, and then mul-
tiplies the result by 12 to obtain the total annual income.

Notice that only records for which the commission value was not NULL have
been included. This issue is discussion later in the chapter. When using some
SQL implementation, such as MS Access, you may have to explicitly request
records with NULL values to be excluded. So the above SQL query:

SELECT EMPNO, ENAME, 12 * (SAL + COMM)

FROM EMP;

may need to be written as:

SELECT EMPNO, ENAME, 12 * (SAL + COMM)

FROM EMP

WHERE COMM IS NOT NULL;

(See later to understand the WHERE part of this query)

Depending on which SQL system you run a query like this, the calculated column
may or may not have a heading. The column heading may be the expression
itself 12 * (SAL + COMM) or may be something indicating that an expression
has been calculated: Expr1004 (these two examples are what happens in Oracle
and MS Access respectively). Since such calculations usually mean something
in particular (in this case, total annual income), it makes sense to name these
calculated columns sensibly wherever possible.

Altering the column headings of query results

11

Sometimes it is desirable to improve upon the default column headings for query
results supplied by the system, to make the results of queries more intelligible.
For example, the result of a query to calculate annual pay by summing the
monthly salary and commission and multiplying by 12, would by default in some
systems such as Oracle, have the expression of the calculation as the column
heading. The result is more readable, however, if we supply a heading which
clearly states what the compound value actually is, i.e. annual income. To do
this, simply include the required header information, in double quotes, after the
column specification in the select-list. For the annual pay example, this would
be:

SELECT EMPNO, ENAME, 12*(SAL + COMM) “ANNUAL INCOME”

FROM EMP;

The result is more meaningful:

Once again, there are alternative ways to achieve the naming of columns in
some systems including MS Access and MySQL, rather than using the double
quotation marks around the column heading. The use of the keyword AS and
square brackets may also be required.

So the SQL query:

SELECT EMPNO, ENAME, 12*(SAL + COMM) “ANNUAL INCOME”

FROM EMP;

may need to be written in as:

SELECT EMPNO, ENAME, 12*(SAL + COMM) AS ANNUAL INCOME

FROM EMP WHERE COMM IS NOT NULL;

(See next section to understand the WHERE part of this query)

12

The WHERE clause

Very often we wish to filter the records/rows retrieved by a query. That is, we
may only wish to have a subset of the records of a table returned to us by a
query.

The reason for this may be, for example, in order to restrict the employees
shown in a query result just to those employees with a particular job, or with
a particular salary range, etc. Filtering of records is achieved in SQL through
the use of the WHERE clause. In effect, the WHERE clause implements the
functionality of the RESTRICT operator from Relational Algebra, in that it
takes a horizontal subset of the data over which the query is expressed.

Basic syntax of the WHERE clause

The WHERE clause is not mandatory, but when it is used, it must appear
following the table-list in an SQL statement. The clause consists of the keyword
WHERE, followed by one or more restriction conditions, each of which are
separated from one another using the keywords AND or OR.

The format of the basic SQL statement including a WHERE clause is therefore:

SELECT <select-list> FROM <table-list>

[WHERE <condition1> <, AND/OR CONDITION 2, .. CONDITION n>]

The number of conditions that can be included within a WHERE clause varies
from DBMS to DBMS, though in most major commercial DBMS, such as Oracle,
Sybase, Db2, etc, the limit is so high that it poses no practical restriction on
query specifications. We can also use parentheses ‘(’ and ‘)’ to nest conditions
or improve legibility.

Examples of using the WHERE clause

WHERE example 1 - records with a value before some date

If we wish to retrieve all of those employees who were hired before, say, May
1981, we could issue the following query:

SELECT EMPNO, ENAME, HIREDATE

FROM EMP

WHERE HIREDATE < ‘01-MAY-1981’;

The result of this query is:

13

Note, incidentally, the standard form in which some systems such as Oracle
handle dates: they are enclosed in single quotes, and appear as: DD-MMM-
YYYY (two digits for day ‘dd’, three letters for month ‘mmm’ and four digits
for year ‘yyyy’). In some systems including MS Access, the date should be
enclosed with two hash ‘#’ characters, rather than single quotes - for example,
#01-JAN-1990#. You should check with your system’s documentation for the
requirement as to how the dates should be formatted. Below are the two versions
of the SQL statements, with different formats for dates:

For systems including Oracle:

SELECT EMPNO, ENAME, HIREDATE

FROM EMP

WHERE HIREDATE < ‘01-MAY-1981’;

For systems including MS Access:

SELECT EMPNO, ENAME, HIREDATE

FROM EMP

WHERE HIREDATE < #01-MAY-1981#;

In our example above, we used the < (less than) arithmetic symbol to form
the condition in the WHERE clause. In SQL, the following simple comparison
operators are available:

= equals

!= is not equal to (allowed in some dialects)

< > is not equal to (ISO standard)

< = is less than or equal to

< is less than

> = is greater than or equal to

14

> is greater than

WHERE example 2 - two conditions that must both be true

The logical operator AND is used to specify that two conditions must both be
true. When a WHERE clause has more than one condition, this is called a
compound condition.

Suppose we wish to retrieve all salesmen who are paid more than 1500 a month.
This can be achieved by ANDing the two conditions (is a salesman, and is paid
more than 1500 a month) together in a WHERE clause as follows:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE JOB = ‘SALESMAN’ AND SAL > 1500;

The result of this query is:

Only employees fulfilling both conditions will be returned by the query. Note
the way in which the job is specified in the WHERE clause. This is an example
of querying the value of a field of type character, or as it is called in Oracle, of
type varchar2. When comparing attributes against fixed values of type character
such as SALESMAN, the constant value being compared must be contained in
single quotes, and must be expressed in the same case as it appears in the
table. All of the data in the EMP and DEPT tables is in upper case, so when
we are comparing character values, we must make sure they are in upper case
for them to match the values in the EMP and DEPT tables. In other words,
from a database point of view, the job values of SALESMAN and salesman are
completely different, and if we express a data item in lower case when it is stored
in upper case in the database, no match will be found.

In some systems, including MS Access, the text an attribute is to match should
be enclosed with double quote characters, rather than single quotes. For exam-
ple, “SALESMAN” rather than ‘SALESMAN’:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE JOB = “SALESMAN” AND SAL > 1500;

WHERE example 3 - two conditions, one of which must be true

15

The logical operator OR is used to specify that at least one of two conditions
must be true.

For example, if we wish to find employees who are based in either department
10 or department 20, we can do it by issuing two conditions in the WHERE
clause as follows:

SELECT EMPNO, ENAME, DEPTNO

FROM EMP

WHERE DEPTNO = 10 OR DEPTNO = 20;

The result of this query is:

The use of NOT

The keyword NOT can be used to negate a condition, i.e. only records that do
not meet a condition are selected. An example might be to list all employees
who are not salesmen:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE NOT(JOB = ‘SALESMAN’);

16

Another example might be to list all employees who do not earn more than
1500:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE NOT(SAL > 1500);

17

The use of !=

The operator != can be used to select where some value is NOT EQUAL TO
some other value. So another way to write the query:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE NOT(JOB = ‘SALESMAN’);

is as follows:

SELECT EMPNO, ENAME, JOB, SAL

FROM EMP

WHERE JOB != ‘SALESMAN’;

Retrieving from a list of values

An alternative solution to the previous OR example is provided by a variation
on the syntax of the WHERE clause, in which we can search for values contained
in a specified list. This form of the WHERE clause is as follows:

WHERE ATTRIBUTE IN (<item1>, <item2>, …, <itemN>)

18

Using this syntax, the previous query would be rewritten as follows:

SELECT EMPNO, ENAME, DEPTNO

FROM EMP

WHERE DEPTNO IN (10, 20);

The result of the query is just the same, but in many cases this form of the
WHERE clause is both shorter and simpler to use.

Querying over a range of values

The BETWEEN keyword can be used in a WHERE clause to test whether a
value falls within a certain range. The general form of the WHERE clause using
the BETWEEN keyword is:

WHERE <attribute> BETWEEN <value1> AND <value2>

The operands <value1> and <value2> can either be literals, like 1000, or ex-
pressions referring to attributes.

For example, if we wish to test for salaries falling in the range 1000 to 2000,
then we can code as follows:

SELECT EMPNO, ENAME, SAL

FROM EMP

WHERE SAL BETWEEN 1000 AND 2000;

The result of this query is:

Note that the BETWEEN operator is inclusive, so a value of 1000 or 2000 would
satisfy the condition and the record included in the query result.

19

An equally valid solution could have been produced by testing whether the
salaries to be returned were >=1000 and <=2000, in which case, the WHERE
clause would have been:

SELECT EMPNO, ENAME, SAL

FROM EMP

WHERE (SAL >=1000) AND (SAL <=2000);

However, this version of the query is longer and more complex, and includes the
need to repeat the SAL attribute for comparison in the second condition of the
WHERE clause.

In general, the solution using BETWEEN is preferable since it is more readable
- it is clearer to a human reading the SQL query code what condition is being
evaluated.

Searching for partial matches

All of the queries we have seen so far have been to retrieve exact matches from
the database. The LIKE keyword allows us to search for items for which we
only know a part of the value. The LIKE keyword in SQL literally means ‘is
approximately equal to’ or ‘is a partial match with’. The keyword LIKE is
used in conjunction with two special characters which can be used as wild card
matches - in other words, LIKE expressions can be used to identify the fact that
we do not know precisely what a part of the retrieved value is.

LIKE example - search for words beginning with a certain letter

As an example, we can search for all employees whose names begin with the
letter S as follows:

SELECT EMPNO, ENAME

FROM EMP

WHERE ENAME LIKE ‘S%”;

This query returns:

20

Here the percentage sign (%) is used as a wild card, to say that we do not know
or do not wish to specify the rest of the value of the ENAME attribute; the only
criteria we are specifying is that it begins with ‘S’, and it may be followed by
no, one or more than one other character.

The percentage sign can be used at the beginning or end of a character string,
and can be used as a wild card for any number of characters.

The other character that can be used as a wild card is the underline character
(_). This character is used as a wild card for only one character per instance of
the underline character. That is, if we code:

WHERE ENAME LIKE ‘S__’;

the query will return employees whose names start with S, and have precisely
two further characters after the S. So employees called Sun or Sha would be
returned, but employee names such as Smith or Salt would not be, as they do
not contain exactly three characters.

Note that we can combine conditions using BETWEEN, or LIKE, with other
conditions such as simple tests on salary, etc, by use of the keywords AND and
OR, just as we can combine simple conditions. However, wild card characters
cannot be used to specify members of a list with the IN keyword.

Sorting data

Data can very easily be sorted into different orders in SQL. We use the ORDER
BY clause. This clause is optional, and when required appears as the last clause
in a query. The ORDER BY keywords are followed by the attribute or attributes
on which the data is to be sorted. If the sort is to be done on more than one
attribute, the attributes are separated by commas.

The general form of an SQL query with the optional WHERE and ORDER BY
clauses looks as follows:

SELECT <select-list> FROM <table-list>

[WHERE <condition1> <, AND/OR CONDITION 2, .. CONDITION n>]
[ORDER BY <attribute-list>]

An example would be to sort the departments into department number order:

SELECT DEPTNO, DNAME

FROM DEPT

ORDER BY DEPTNO;

OR

SELECT DEPTNO, DNAME

21

FROM DEPT

ORDER BY DEPTNO ASC;

Note: SQL provides the keyword ASC to explicitly request ordering in ascending
order.

Or to sort into alphabetical order of the name of the department:

SELECT DEPTNO, DNAME

FROM DEPT

ORDER BY DNAME;

Descending order

SQL provides the keyword DESC to request sorting in the reverse order. So to
sort the departments into reverse alphabetical order, we can write the following:

SELECT DEPTNO, DNAME

FROM DEPT

ORDER BY DNAME DESC;

22

A sort within a sort

It is very easy to specify a sort within a sort, i.e. to first sort a set of records
into one order, and then within each group to sort again by another attribute.

For example, the following query will sort employees into department number
order, and within that, into employee name order.

SELECT EMPNO, ENAME, DEPTNO

FROM EMP

ORDER BY DEPTNO, ENAME;

The result of this query is:

23

As can be seen, the records have been sorted into order of DEPTNO first, and
then for each DEPTNO, the records have been sorted alphabetically by ENAME.
This can be easily seen if you have a repeating DEPTNO - for example, if we
had two employees, WARD and KUDO, belonging to DEPTNO 7521. Two
DEPTNO 7521 will appear at the end of the table like above, but KUDO will
be on top of WARD under the ENAME column.

When a query includes an ORDER BY clause, the data is sorted as follows:

• Any null values appear first in the sort

• Numbers are sorted into ascending numeric order

• Character data is sorted into alphabetical order

• Dates are sorted into chronological order

We can include an ORDER BY clause with a WHERE clause, as in the following

24

example, which lists all salesman employees in ascending order of salary:

SELECT EMPNO,ENAME,JOB,SAL

FROM EMP

WHERE JOB = ‘SALESMAN’

ORDER BY SAL;

Handling NULL values in query results (the NVL function)

In the chapter introducing the Relational model, we discussed the fact that
NULL values represent the absence of any actual value, and that it is correct
to refer to an attribute being set to NULL, rather than being equal to NULL.
The syntax of testing for NULL values in a WHERE clause reflects this. Rather
than coding WHERE X = NULL, we write WHERE X IS NULL, or, WHERE
X IS NOT NULL.

WHERE clauses using IS NULL and IS NOT NULL

For example, to return all employees who do not receive a commission, the query
would be:

SELECT EMPNO, ENAME, SAL

FROM EMP

WHERE COMM IS NULL;

25

We can also select records that do not have NULL values:

SELECT EMPNO, ENAME, SAL, COMM

FROM EMP

WHERE COMM IS NOT NULL;

26

The NVL function

There is an extremely useful function available for the handling of NULLs in
query results. (It is important to remember that NULL is not the same as, say,
zero for a numeric attribute.) This is the NVL function, which can be used to
substitute other values in place of NULLs in the results of queries. This may
be required for a number of reasons:

• By default, arithmetic and aggregate functions ignore NULL values in
query results. Sometimes this is what is required, but at other times we
might explicitly wish to consider a NULL in a numeric column as actually
representing the value zero, for example.

• We may wish to replace a NULL value, which will appear as a blank
column in the displayed results of a query, with a more explicit indication
that there was no value for that column instance.

The format of the NVL function is:

NVL(<column>, <value>)

<column> is the attribute in which NULLs are to be replaced, and <value> is
the substitute value.

Examples of using the NVL function

An example of using NVL to treat all employees with NULL commissions as if
they had zero commission:

SELECT EMPNO,NVL(COMM, 0)

FROM EMP;

To display the word ‘unassigned’ wherever a NULL value is retrieved from the
JOB attribute:

SELECT EMPNO,NVL(job, ‘unassigned’)

FROM EMP;

Exercise

What would happen in the cases of employees who do not receive a commission,
i.e. whose commission attribute is set to NULL?

Answer: The short, and somewhat surprising answer to this question, is that the
records of employees receiving NULL commission will simply not be included in
the result. The reason for this is that as we saw in the chapter on the Relational
model, NULL simply indicates the absence of a real value, and so the result of
adding a salary value to a NULL commission value is indeterminate. For this
reason, SQL cannot return a value for the annual pay of employees where those
employees receive no commission. There is a very useful solution to this problem,

27

which will be dealt with later in this chapter, under the heading “Handling
NULL values in query results”.

REFERENCE MATERIAL: SQL functions

SQL functions help simplify different types of operations on the data. SQL
supports four types of functions:

• Arithmetic functions

• Character functions

• Date functions

• Aggregate functions

The functions are used as part of a select-list of a query, or if they refer to a
specific row, they may be used in a WHERE clause. They are used to modify
the values or format of data being retrieved.

Arithmetic functions

The most commonly used arithmetic functions are as follows:

• greatest

• greatest(object-list) - returns the greatest of a list of values

Example:

greatest(sal,comm) - returns whichever of the SAL or COMM attributes
has the highest value

• least

• least(object-list) - returns the smallest of a list of values

Example:

least(sal,comm) - returns whichever of the SAL or COMM attributes has
the lowest value

• round

• round(number[,d]) - rounds the number to d digits right of the decimal
point (d can be negative)

Example:

round(sal,2) - rounds values of the SAL attribute to two decimal places

• trunc

28

• Trunc(number,d) – truncates number to d decimal places (d can be nega-
tive)

Example:

trunc(sal,2) - truncates values of the SAL attribute to two decimal places

Note: The difference between the round and truncate functions is that
round will round up digits of five or higher, whilst trunc always rounds
down.

• abs

• abs(number) - returns the absolute value of the number

Example:

abs(comm-sal) - returns the absolute value of COMM - SAL; that is, if
the number returned would be negative, the minus sign is discarded

• sign

• sign(number) - returns 1 if number greater than zero, 0 if number = zero,
-1 if number less than zero

Example:

sign(comm-sal) - returns 1 if COMM - SAL > 0, 0 if COMM - SAL = 0,
and - 1 if COMM - SAL < 0

• mod

• mod(number1,number2) - returns the remainder when number1 is divided
by number2

Example:

mod(sal,comm) - returns the remainder when SAL is divided by COMM

• sqrt

• sqrt(number) - returns the square root of the number. If the number is
less than zero then sqrt returns null

Example:

sqrt(sal) - returns the square root of salaries

• to_char

• to_char(number[picture]) - converts a number to a character string in the
format specified

Example:

to_char(sal,9999.99) - represents salary values with four digits before the
decimal point, and two afterwards

29

• decode

• decode(column,starting-value,substituted-value..) - substitutes alterna-
tive values for a specified column

Example:

decode(comm,100,200,200,300,100) - returns values of commission in-
creased by 100 for values of 100 and 200, and displays any other comm
values as if they were 100

• ceil

• ceil(number) - rounds up a number to the nearest integer

Example:

ceil(sal) - rounds up salaries to the nearest integer

• floor

• floor(number) - truncates the number to the nearest integer

Example:

floor(sal) - rounds down salary values to the nearest integer

Character functions

The most commonly used character string functions are as follows:

• string1 || string2

• string1 || string2 - concatenates (links) string1 with string2

Example:

deptno || empno - concatenates the employee number with the department
number into one column in the query result

• decode

• decode(column,starting-value,substitute-value, ….) - translates column
values to specified alternatives. The final parameter specifies the value
to be substituted for any other values.

Example:

decode(job,‘CLERK’,‘ADMIN WORKER’,‘MANAGER’,‘BUDGET
HOLDER’,PRESIDENT’,‘EXECUTIVE’,‘NOBODY’) This example
translates values of the JOB column in the employee table to alternative
values, and represents any other values with the string ‘NOBODY’.

• distinct

30

• distinct <column> - lists the distinct values of the specific column

Example:

Distinct job - lists all the distinct values of job in the JOB attribute

• length

• length(string) - finds number of characters in the string

Example:

length(ename) - returns the number of characters in values of the ENAME
attribute

• substr

• substr(column,start-position[,length]) - extracts a specified number of
characters from a string

Example:

substr(ename,1,3) - extracts three characters from the ENAME column,
starting from the first character

• instr

• instr(string1,string2[,start-position]) - finds the position of string2 in
string1. The parentheses around the start-position attribute denote that
it is optional

Example:

instr(ename,‘S’) - finds the position of the character ‘S’ in values of the
ENAME attribute

• upper

• upper(string) - converts all characters in the string to upper case

Example:

upper(ename) - converts values of the ENAME attribute to upper case

• lower

• lower(string) - converts all characters in the string to lower case

Example:

lower(ename) - converts values of the ENAME attribute to lower case

• to_number

• to_number(string) - converts a character string to a number

Example:

to_number(‘11’) + sal - adds the value 11 to employee salaries

31

• to_date

• to_date(str[,pict]) - converts a character string in a given format to a date

Example:

to_date(‘14/apr/99’,‘dd/mon/yy’) - converts the character string
‘14/apr/99’ to the standard system representation for dates

• soundex

• soundex(string) - converts phonetically similar strings to the same value

Example:

soundex(‘smith’) - converts all values that sound like the name Smith to
the same value, enabling the retrieval of phonetically similar attribute
values

• vsize

• vsize(string) - finds the number of characters required to store the charac-
ter string

Example:

vsize(ename) - returns the number of bytes required to store values of the
ENAME attribute

• lpad

• lpad(string,len[,char]) - left pads the string with filler characters

Example:

lpad(ename,10) - left pads values of the ENAME attribute with filler char-
acters (spaces)

• rpad

• rpad(string,len[,char]) - right pads the string with filler characters

Example:

rpad(ename,10) - right pads values of the ENAME attribute with filler
characters (spaces)

• initcap

• initcap(string) - capitalises the initial letter of every word in a string

Example:

initcap(job) - starts all values of the JOB attribute with a capital letter

• translate

32

• translate(string,from,to) - translates the occurrences of the ‘from’ string
to the ‘to’ characters

Example:

translate(ename,‘ABC’,‘XYZ’) - replaces all occurrences of the string
‘ABC’ in values of the ENAME attribute with the string ‘XYZ’

• ltrim

• ltrim(string,set) - trims all characters in a set from the left of the string

Example:

ltrim(ename,‘’) - removes all spaces from the start of values of the ENAME
attribute

• rtrim

• rtrim(string,set) - trims all characters in the set from the right of the string

Example:

rtrim(job,‘.’) - removes any full-stop characters from the right-hand side
of values of the JOB attribute

Date functions

The date functions in most commercially available database systems are quite
rich, reflecting the fact that many commercial applications are very date driven.
The most commonly used date functions in SQL are as follows:

• Sysdate Sysdate - returns the current date

• add-months add-months(date, number) - adds a number of
months from/to a date (number can be negative). For example: add-
months(hiredate, 3). This adds three months to each value of the
HIREDATE attribute

• months-between months-between(date1, date2) - subtracts date2
from date1 to yield the difference in months. For example: months-
between(sysdate, hiredate). This returns the number of months between
the current date and the dates employees were hired

• last-day last-day(date) - moves a date forward to last day in the month.
For example: last-day(hiredate). This moves hiredate forward to the last
day of the month in which they occurred

• next-day next-day(date,day) - moves a date forward to the given day
of week. For example: next-day(hiredate,‘monday’). This returns all
hiredates moved forward to the Monday following the occurrence of the
hiredate

33

• round round(date[,precision]) - rounds a date to a specified precision.
For example: round(hiredate,‘month’). This displays hiredates rounded
to the nearest month

• trunc trunc(date[,precision]) - truncates a date to a specified precision.
For example: trunc(hiredate,‘month’). This displays hiredates truncated
to the nearest month

• decode decode(column,starting-value,substituted-value) - sub-
stitutes alternative values for a specified column. For example:
decode(hiredate,‘25-dec-99’,‘christmas day’,hiredate). This displays any
hiredates of the 25th of December, 1999, as Christmas Day, and any
default values of hiredate as hiredate

• to_char to_char(date,[picture]) - outputs the data in the specified
character format. The format picture can be any combination of the
formats shown below. The whole format picture must be enclosed in
single quotes. Punctuation may be included in the picture where required.
Any text should be enclosed in double quotes. The default date format is:
‘dd-mon-yy’. Example: numeric format, description

• cc, century, 20

• y,yyy, year, 1,986

• yyyy, year, 1986

• yyy, last three digits of year, 986

• yy, last two digits of year, 86

• y, last digits of year, 6

• q, quarter of year, 2

• ww, week of year, 15

• w, week of month, 2

• mm, month, 04

• ddd, day of year, 102

• dd, day of month, 14

• d, day of week, 7

• hh or hh12, hour of day (01-12), 02

• hh24, hour of day (01-24), 14

• mi, minutes, 10

• ss, seconds, 5

• sssss, seconds past midnight, 50465

34

• j, julian calendar day, 2446541

The following suffixes may be appended to any of the numeric formats (suffix,
meaning, example):

• th, st, nd, rd, after the number, 14th

• sp, spells the number, fourteen

• spth/st/nd/rd, spells the number, fourteenth

There is also a set of character format pictures (character format, meaning,
example):

• year, year, nineteen-eighty-six

• month, name of month, april

• mon, abbreviated month, apr

• day, day of week, saturday

• dy, abbreviated day, sat

• am or pm, meridian indicator, pm

• a.m. or p.m., meridian indicator, p.m.

• bc or ad, year indicator, ad

• b.c. or a.d., year indicator, a.d.

If you enter a date format in upper case, the actual value will be output in upper
case. If the format is lower case, the value will be output in lower case. If the
first character of the format is upper case and the rest lower case, the value will
be output similarly.

For example:

to-char(hiredate,'dd/mon/yyyy')

to-char(hiredate,'day,"the"Ddspth"of"month')

Aggregate functions

All aggregate functions with the exception of COUNT operate on numerical
columns. All of the aggregate functions below operate on a number of rows:

• avg

• avg(column) - computes the average value and ignores null values

Example:

SELECT AVG(SAL) FROM EMP;

35

Gives the average salary in the employee table, which is 2073.21

• Sum

• Sum(column) - computes the total of all the values in the specified column
and ignores null values

Example:

sum(comm) - calculates the total commission paid to all employees

• min

• min(column) - finds the minimum value in a column

Example:

min(sal) - returns the lowest salary

• max

• max(column) - finds the maximum value in a column

Example:

max(comm) - returns the highest commission

• count

• count(column) - counts the number of values and ignores nulls

Example:

count(empno) - counts the number of employees

• variance

• variance(column) - returns the variance of the group and ignores nulls

Example:

variance(sal) - returns the variance of all the salary values

• Stddev

• Stddev(column) - returns the standard deviation of a set of numbers (same
as square root of variance)

Example:

stddev(comm) - returns the standard deviation of all commission values

Activity - EMPLOYEE AND DEPARTMENT QUERIES

Using the EMP and DEPT tables, create the following queries in SQL, and test
them to ensure they are retrieving the correct data.

36

You may wish to review the attributes of the EMP and DEPT tables, which are
shown along with the data near the start of the section called Introduction to
the SQL language.

1. List all employees in the order they were hired to the company.

2. Calculate the sum of all the salaries of managers.

3. List the employee numbers, names and hiredates of all employees who
were hired in 1982.

4. Count the number of different jobs in the EMP table without listing them.

5. Find the average commission, counting only those employees who receive
a commission.

6. Find the average commission, counting employees who do not receive a
commission as if they received a commission of 0.

7. Find in which city the Operations department is located.

8. What is the salary paid to the lowest-paid employee?

9. Find the total annual pay for Ward.

10. List all employees with no manager.

11. List all employees who are not managers.

12. How many characters are in the longest department name?

Review questions

1. Distinguish between the select-list and the table-list in an SQL statement,
explaining the use of each within an SQL statement.

2. What restrictions are there on the format and structure of the basic SQL
queries as covered so far in this chapter? Describe the use of each of the
major components of SQL query constructs that we have covered up to
this point.

3. How are NULL values handled when data is sorted?

4. What facilities exist for formatting dates when output from an SQL state-
ment?

5. What facilities are provided for analysing data in the same column across
different rows in a table?

6. What is the role of the NVL function?

37

Discussion topics

1. Is SQL for end-users?

As mentioned earlier in the chapter, a number of people in the database
community believe that SQL is a viable language for end-users - that is,
people whose jobs are not primarily involved with computing. From your
introductory experience of the language so far, you should consider reasons
for and against this view of the SQL language.

2. Can you think of any reasons why use of the wild card ‘*’ as we have seen
in a select-list may lead to problems?

38

	Chapter 3. Introduction to SQL
	Objectives
	Introduction to SQL
	Context
	SQL overview
	The example company database
	The EMP table
	The DEPT table
	The data contained in the EMP and DEPT tables

	SQL SELECT statement
	Simple example queries
	Calculating values and naming query columns

	The WHERE clause
	Basic syntax of the WHERE clause
	Examples of using the WHERE clause
	The use of NOT
	The use of !=
	Retrieving from a list of values
	Querying over a range of values
	Searching for partial matches

	Sorting data
	Descending order
	A sort within a sort

	Handling NULL values in query results (the NVL function)
	WHERE clauses using IS NULL and IS NOT NULL
	The NVL function

	REFERENCE MATERIAL: SQL functions
	Arithmetic functions
	Character functions
	Date functions
	Aggregate functions

	Activity - EMPLOYEE AND DEPARTMENT QUERIES
	Review questions
	Discussion topics

